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Abstract
Diffusion models have been firmly established as
principled zero-shot solvers for linear and nonlin-
ear inverse problems, owing to their powerful im-
age prior and iterative sampling algorithm. These
approaches rely on Tweedie’s formula, which uses
the score function at each step to relate the dif-
fusion variate xt to the posterior mean E[x0|xt],
which is used to estimate the error of the final
denoised sample x0. However, this approach
leaves out information from the measurement
y itself, which must then be integrated down-
stream. In this work, we propose to directly esti-
mate the conditional posterior mean E[x0|xt,y],
which can be formulated as a lightweight, single-
parameter maximum likelihood estimation prob-
lem. The resulting prediction can be summa-
rized as a data-conditional score and integrated
into any standard sampler, resulting in a fast and
memory-efficient inverse solver. Moreover, our
optimizer is amenable to a noise-aware likelihood-
based stopping criteria that is robust to measure-
ment noise in y. We demonstrate comparable or
improved performance against a wide selection
of contemporary inverse solvers across multiple
datasets and tasks.

1. Introduction
In this work, we study a broad class of problems involving
the recovery of a signal x from a measurement

y = A(x) + η. (1)

with noise η and measurement operator A. Known as in-
verse problems, such formulations appear in a multitude
of fields, with applications including acoustic reconstruc-
tion (Kac, 1966), seismic profiling (Hardage, 1985), X-ray
computed tomography and magnetic resonance imaging

*Equal contribution 1Yale University 2Virginia Tech. Corre-
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Figure 1: An illustration of the posterior mean versus the
conditional posterior mean at time t. The latter can be
obtained by estimating the data-conditional score with the
extra information contained in y.

(Suetens, 2017), and a large number of computer vision
reconstruction tasks such as inpainting, deconvolution, col-
orization, super-resolution, and phase retrieval (Andrews
and Hunt, 1977).

Often, inverting A is numerically intractable (Appendix
C), meaning that solutions x satisfying A(x) = y are not
directly obtainable or unique (Vogel, 2002). Moreover, due
to measurement noise, it is often possible, but not practically
desirable to fit perfectly to y for risk of overfitting to η
(Aster et al., 2018). Therefore, a fundamental quandary in
solving inverse problems is how to select the best option
from an equivalence class of solutions, i.e., choosing x∗ ∈
{x : A(x) ≈ y}.

In classical solvers, this is carried out by a regularizer on a
normed error loss (Engl et al., 1996). One seeks

x∗ = argmin
x

R(x) s.t. ||A(x)− y|| ≤ ϵ, (2)

where ϵ is a soft error margin and R is a simple function
that satisfies user-specified heuristics, e.g., smoothness or
total variation (Beck and Teboulle, 2009). However, such
approaches often fail to produce realistic results, as R lacks
the ability to reconstruct details lost by A. With the ad-
vent of deep generative models, practitioners found that
restricting solutions to the range of a generative model G
can greatly improve realism: let x = G(w) and optimize
over w, which can be latent inputs (Bora et al., 2017) or
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Figure 2: (a) E[x0|xt] via the unconditional score versus (b) E[x0|xt,y] via
the data-conditional score obtained by our maximum likelihood estimator. With
the unconditional score, x̂0 estimates the posterior mean of the dataset, rather
than a sample x that satisfies A(x) ≈ y, especially at T ≫ 0 (Section 2).

Figure 3: The hazard of over- or under-
fitting for a super-resolution task. An
ideal noise-aware fit balances between
the prior and the noisy measurement y.

Table 1: Overview of pixel-based solvers used for compar-
isons in this work. We list the type (Section A.2), whether
it requires backpropagation through a neural function evalu-
ation, runtime, and memory footprint.

Solver Type No NFE
Backprop Runtime Memory

DCS (Ours) Hybrid ✓ 1x 1x

MCG (Chung et al., 2022b) Projection ✗ 2.6x 3.2x
DPS (Chung et al., 2023) Posterior ✗ 2.5x 3.2x
DPS-JF (Chung et al., 2023) Posterior ✓ 1.2x 1.1x
DDNM (Wang et al., 2022) Projection ✓ 1.5x 1x
DDRM (Kawar et al., 2022) Projection ✓ 1.5x 1x
RED-Diff (Mardani et al., 2024) Projection ✓ 1.5x 1x
LGD-MC (Song et al., 2023b) Posterior ✗ 2x 3.2x

weights (Ulyanov et al., 2018) of a deep neural network.
Overall, these methods improve the fidelity of x, but they
lack interpretability and require a judiciously selected R
and ϵ.

Recently, great strides have been made in solving inverse
problems with diffusion models (Ho et al., 2020), which pro-
duce diverse, realistic samples (Dhariwal and Nichol, 2021;
Esser et al., 2024) with robust generalization guarantees
(Kadkhodaie et al., 2023). Moreover, they are interpretable,
directly modeling the (Stein) score∇ log pt(xt). Uncondi-
tional sampling proceeds by reversing a noising process on
x0 ∼ pdata roughly described (in black) by

xt−1 =

unconditional sampling︷ ︸︸ ︷
denoise[xt,∇ log pt(xt)] + guidance︸ ︷︷ ︸

conditional sampling

.

Solvers then employ a conditional sampling process via
a guidance term that pushes samples toward solutions
consistent with y. This approach faces a fundamental chal-
lenge: the guidance term depends on a consistency error
||A(x)− y|| that is only tractable for x = x0 (Chung et al.,
2022a). Such methods thus rely (explicitly or implicitly via

(Song et al., 2020a)) on Tweedie’s formula, which estimates
x0 given a noise prediction ϵt ≈ −σt∇ log pt(xt):

x̂0 = E [x0|xt] =
1
√
αt

(xt − σtϵt) . (3)

This can then be substituted for x in the consistency error,
producing a differentiable function with respect to xt.

However, a naive implementation of Eq. 3 introduces sig-
nificant approximation error, as E[x0|xt] = x0 if and only
if xt is normally distributed (Theorem 2.1). Existing meth-
ods use the unconditional score∇ log pt(xt) where this as-
sumption does not generally hold. In this work, we use the
data-conditional score ∇ log pt(xt|x0) and a measurement
consistent variant of Tweedie’s formula that incorporates
additional information from y to obtain the conditional pos-
terior mean E [x0|xt, y] (Section 3).

The data-conditional score∇ log pt(xt|x0) plays a crucial
role during diffusion model training but is intractable during
unconditional sampling where x0 is unknown. Surprisingly,
in inverse problems, the information present in y allows this
term to be recovered to great accuracy by simple maximum
likelihood estimation with the measurement model. We
outline this framework (Section 3) and show theoretically
that our choice of estimator is statistically sufficient for
the measurement, meaning the conditional posterior mean
E[xt|x0,y] contains all of the information contained in y.

Our contributions are as follows:

• We identify a fundamental limitation with using
Tweedie’s formula to predict x0 in inverse problems:
the approximation is only exact when xt is normally
distributed, which is almost never true.

• We sidestep this by considering a simpler conditional
diffusion process defined in terms of p(xt|x0). We
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Figure 4: An illustration of our proposed sampling algorithm. An initial noise prediction ϵθ is corrected by the solution
ϵy of a noise-aware maximization scheme of the measurement likelihood p(y|xt, ϵy). This results in the corrected data-
conditional noise prediction (ϵθ + ϵy) ≈ −σ−1

t ∇ log pt(xt|x0). For details see Section 3.

propose a maximum likelihood estimator for its score,
and show that it captures all information present in y,
even under significant measurement noise (Figure 5).

• We demonstrate how this score can be plugged into
any standard sampler (e.g., DDPM), resulting in
an algorithm that is simple, noise-robust, neural
backpropagation-free, and stable across time steps.
Moreover, it achieves improvements in performance
on a large selection of inverse problems, datasets and
noise levels1.

2. Revisiting Tweedie’s for Inverse Problems
Diffusion models (Ho et al., 2020) reverse a noise-
corrupting forward process with marginals xt ∼ pt(xt|x0),

xt =
√
αtx0 +

√
1− αt︸ ︷︷ ︸
σt

z, z ∼ N (0, I), (4)

parameterized by a monotonically time-decreasing scalar
αt. New samples are generated via the reverse diffusion
process which leverages the learned score function sθ =
−σ−1

t ϵθ ≈ ∇ log pt(xt) (Anderson, 1982; Vincent, 2011;
Song et al., 2020b). Diffusion-based solvers for inverse
problems can be categorized as posterior or projection
solvers, and aim to modify the reverse process such that the
final variate x0 coincides with a member of the solution set
{x0 : A(x0) ≈ y}2. However, this paradigm is afflicted by

1Code for method and experiments provided in https:
//anonymous.4open.science/r/diffusion_
conditional_sampling

2We defer a more extensive discussion on diffusion models
diffusion-based inverse problem solvers to Appendix A.

a fundamental computability paradox: since the consistency
error is only explicitly known at t = 0 via the likelihood
function

p(y|x0) ∝ exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(5)

we cannot exactly guide the diffusion process at time t > 0
without first solving for x0. Simultaneously, we cannot
generally obtain x0 without first computing xt. Accurately
estimating x̂0 ≈ x0 is a fundamental problem all solvers
must contend with to function properly.

In posterior solvers, this culminates in the computation of
∇ log p(y|xt), which is approximated by∇ log p(y|x̂0). In
projection solvers, this is the projection step Pxt, which
is driven by a projection on x̂0, followed by a DDIM
step (Song et al., 2020a) that involves x̂0. In both cases,
Tweedie’s formula is used to create an estimate for x0, given
the current xt by predicting the posterior mean

E[x0|xt] =

∫
Rd

x0p(x0|xt)dx0. (6)

A surprising limitation. This estimator has an acute limi-
tation: E[x0|xt] only coincides with x0 when xt is normally
distributed. We formalize this necessary and sufficient con-
dition below.

Theorem 2.1. Let xt be sampled from a diffusion process
(as in Eq. 4). E[x0|xt] = x0 if and only if p(xt) is a simple
isotropic Gaussian with mean

√
αtx0 and variance σtI.

Note that xt is almost never Gaussian, since xt is distributed
as ϕσ ∗ pdata. While ϕσ is a simple isotropic Gaussian, pdata
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Figure 5: Reconstruction quality at various noise levels σy ∈ {0.01, 0.1, 0.5}. Our approach strikes a careful balance
between quality at each noise level (Table 2) and computational cost (Table 1). More examples in Appendix F.

is not — the data distribution can be arbitrarily non-convex
and multimodal.

We visualize this in Figure 2, where at larger values of t,
the fidelity of the estimated x0 is poor, resulting in a low
quality prediction that is inconsistent with the measurement
y. Ultimately, Eq. 6 is a weighted average over all data
x ∼ pdata, and often cannot properly estimate x0 without
incorporating measurement information from y. Instead,
we propose to use the conditional posterior mean

E[x0|xt,y] =

∫
Rd

x0p(x0|xt,y)dx0, (7)

which only considers those x0 ∼ pdata consistent with y. In
the following section, we outline a method for directly in-
corporating this conditional information into the Tweedie’s
estimate.

3. Diffusion Conditional Sampling
We propose a novel framework for solving inverse prob-
lems with diffusion models via a measurement consistent
Tweedie’s formula predicting the conditional posterior mean
(Eq. 7).

At each step, we form a single-parameter measurement
model whose maximum likelihood estimator approximates
the data-conditional score ∇ log pt(xt|x0) (Section 3.1).

This estimator is optimized with a noise-robust, likelihood-
based early stopping criterion (Section 3.2). The learned
score is then input to standard DDPM sampler (Ho et al.,
2020), resulting in Algorithm 1. This approach is motivated
by both powerful theoretical guarantees (Section 3.3), as
well as significant computational advantages (Section 3.4).

3.1. Measurement Likelihood Model

We wish to reverse a diffusion process originating from a
fixed x0 — the desired signal x (Eq. 1), where

p∗(xt) = N (xt;
√
αtx0, (1− αt)I). (8)

This is equivalent to the conditional distribution pt(xt|x0)
of the forward process in a standard diffusion model. While
x0 is unknown, we can apply Tweedie’s to Eq. 8 and solve
for the related data-conditional score via a closed form
expression for the likelihood (Eq. 5):

log p(y|x0(ϵy,xt)) ∝

− 1

2σ2
y

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣y −A

 1
√
αt

[xt + σ2
t ∇xt

log p∗(xt)︸ ︷︷ ︸
∇ log pt(xt|x0)

]


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

.

(9)

Since pt(xt|x0) is distributed as an isotropic Gaussian by
construction, the posterior mean would recover x0 exactly
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Algorithm 1 Diffusion Conditional Sampler (DCS)

1: Input: y,A, ϵθ | Output: x0

2: xT ∼ N (0, I)
3: for t = T to 1 do
4: ϵ ∼ N (0, I)
5: ϵy ← arg nam

ϵy

pt

(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: xt−1 ← ddpm step(xt, ϵθ + ϵy)
7: end for

Algorithm 2 Noise-aware Maximization (nam)

1: Input: y,A,xt, ϵθ | Output: ϵy
2: ϵy ← 0
3: x̂← Tweedie’s(xt, ϵθ + ϵy)
4: while 2Φ[−||y −A[x̂]||11/(dσy)] < σt do

5: ϵy ← ϵy + η∇ log pt

(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: x̂← Tweedie’s(xt, ϵθ + ϵy)
7: end while

(Theorem 2.1), which we further discuss below. Now, defin-
ing the equivalence,

∇ log pt(xt|x0) = −σ−1
t [ϵθ(xt, t) + ϵy], (10)

we can solve for our single parameter ϵy by maximizing
the joint likelihood between the measurement y and our
parameter ϵy. This forms our estimator for the true data-
conditional score, ∇ log pt(xt|x0):

scorrected = −σ−1
t

[
ϵθ(xt, t) + ϵ∗y

]
, (11)

where

ϵ∗y = argmax
ϵy

−1
2σ2

y

∣∣∣∣∣∣∣∣y −A(
xt − σt[ϵθ(xt, t) + ϵy]√

αt

)∣∣∣∣∣∣∣∣2
2

.

(12)

Finally, scorrected can then be input to any standard diffusion
model sampler.

Now we turn to estimating ϵ∗y. Given the often noisy and ill-
posed nature of Eq. 12 (Appendix C), we seek to select from
the solution set {ϵy : A[x̂0] ≈ y} through a noise-aware
maximization algorithm, which we outline below.

3.2. Noise-Aware Maximization

We propose a noise-aware maximization scheme (nam) to
improve stability across noise levels. Given a single noisy
measurement y = A[x]+η, there is a high risk of overfitting
to noise η (Figures 3 and 5). To mitigate this problem, we
propose a maximization scheme with a specialized early
stopping criterion based on the measurement likelihood. We
leverage the intuition that the corrected data-conditional
score should yield a prediction via Eq. 32 where a vector of
residuals,

res = y −A[x̂0] (13)

should be i.i.d. normally distributed with variance σ2
y. In

other words, each index of res should come from the same
distribution as an index of η. Let this be the null hypothesis
H0 — we thus seek to end the likelihood maximization
process as soon as H0 holds.

Formally, we optimize Eq. 9 until the likelihood of the
alternate hypothesis H1, that res is not distributed as η,
is below a desired threshold pcritical. Since overfitting is
more problematic at the end of sampling (t ≈ 0) than the
beginning of sampling (t ≈ T ), we set pcritical dynamically
as a function of t, namely pcritical(t) = σt. This scheme
is heavily inspired by the classical two-sided z-test (Hogg
et al., 2013) with d samples, where d is the dimensionality
of the image.

We use the early-stopping criterion at each time t

P(|ξ| > |res|
∣∣H0) = 2Φ(−|res|/σy) < σt, (14)

where ξi
iid∼ N (0, σ2

y) and Φ is the CDF of a standard nor-
mal distribution. We note that this differs from a classical
z-test since we are not seeking to reject the null hypothesis,
but optimizing until the null hypothesis can no longer be
rejected with sufficiently high probability. The full noise-
aware maximization algorithm can be summarized by Al-
gorithm 2. Since our loss function (Eq. 9) is quadratic, our
proposed nam has worst-case linear convergence guaran-
tees due to classical results in gradient descent (Boyd and
Vandenberghe, 2004; Ryu and Boyd, 2016) with linear A.

3.3. Theory

We highlight two key theoretical properties of our sampler,
the correctness of the Tweedie’s approximation and the
sufficiency of the resulting score with respect to y.

Correctness Our algorithm makes use of the conditional
variant of Tweedie’s formula, which obeys a very similar
set of rules as Tweedie’s (Theorem 2.1).

Theorem 3.1. Let xt be sampled from a conditional dif-
fusion process given y (as in Eq. 4, with x0 ∼ p(x0|y)).
E[x0|xt,y] = x0 if and only if p(xt) is a simple isotropic
Gaussian with mean

√
αtx0 and variance σtI.

What differs from existing approaches is our setting, and in
two key ways. First, we incorporate conditional information
from y. Second, rather than pt(xt), we consider pt(xt|x0),
which is an isotropic Gaussian distribution by construction.
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Figure 6: Qualitative comparison of our proposed method against related work on FFHQ 256×256-1K (left) and ImageNet
256×256-1K (right). Further comparisons can be found in Appendix F.

Therefore, given ∇ log pt(xt|x0), Theorem 3.1 tells us that
the application of Tweedie’s formula in Eq. 9 will exactly
recover x0.

Sufficiency Even with the optimization framework in Eq.
11,∇ log pt(xt|x0) can only be computed up to the informa-
tion present in y. However, we show that this is provably the
best possible estimate. Namely, ϵ∗y (and therefore scorrected)
is a sufficient statistic for the ground truth x0 given mea-
surement y under regularity conditions on A and η:

Theorem 3.2 (ϵy∗ is a sufficient statistic). Let y = A(x0)+
η be an observation from the forward measurement model,
and let ϵy∗ be defined as in Eq. 12. Then p(y|ϵy∗) =
p(y|x0), given that either η = 0, or A is linear.

We extend this result to more general conditions in Theorem
B.5. In this sense, DCS effectively closes an information
”leak” by ensuring that the only information about x0 lost
in the sampling process is solely that which is irrevocably
destroyed by the operator A.

3.4. Efficiency

Empirically, DCS enjoys two main computational advan-
tages. First, it does not need to compute expensive gra-
dients of the score function. Second, it boasts stable per-
formance across choices of T due to the linearity of the
data-conditional diffusion process.

Figure 7: A study on the effect of T on solver performance.
While other approaches exhibit poor performance due to
the nonlinearity of the original reverse diffusion process,
our method remains nearly invariant to T due to the near-
linearity of the data-conditional diffusion process.

No Expensive ∇sθ(xt, t) Evaluations A drawback of
many existing algorithms is the need to compute gradients
of the score network during sampling (Table 1). This is
the most expensive computation in the diffusion step, in-
creasing the runtime of the algorithm by 2-3×. However,
this is unavoidable in posterior solvers without sacrificing
performance (Section 4.3). Projection solvers sidestep this
issue by framing a diffusion process in a subspace of A—
however, this cannot be done when A is nonlinear.

A Near-Linear Reverse Process As DCS models
∇ log pt(xt|x0), it is able to sample approximately from
the data-conditional reverse diffusion process, which re-
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verses the forward process defined in Eq. 4. When the
data-conditional score is exactly estimated, Tweedie’s re-
covers x0, and the diffusion process can be solved in a single
step. In reality, our approximation of this process is correct
up to the information about x0 present in y (Theorem B.5),
under the assumptions detailed in the previous section.

In Figure 7, we validate the robustness of our algorithm
to the total diffusion steps (T ) with the super-resolution
task on a subset of the FFHQ 256× 256 dataset. We com-
pare against DPS (Chung et al., 2023), DPS-JF (a neural
backpropagation-free variant of DPS), and DDNM (Wang
et al., 2022) at σy = 0.05.

4. Experiments
We examine the empirical performance of DCS across a
variety of natural image based inverse problems, against a
range of state-of-the-art methods. Quantitatively, we lever-
age three key metrics to evaluate the quality of signal recov-
ery: Learned Perceptual Image Patch Similarity (LPIPS),
peak signal-to-noise ratio (PSNR), and Frechet Inception
Distance (FID).

We run DCS and the other methods listed in Table 1 on
the FFHQ-256 (Karras et al., 2019), (Kazemi and Sullivan,
2014) and ImageNet (Deng et al., 2009) datasets. For the
prior network ϵθ, we use the corresponding pretrained model
weights from (Chung et al., 2022a).

We examine five operator inversion tasks: Super-Resolution,
Gaussian Deblurring, Motion Deblurring, Random Inpaint-
ing, and Box Inpainting. We first run experiments with
additive Gaussian noise of standard deviation σy = 0.01
(we present results at a higher noise level in Section 4.1).
We also present quantitative results on FFHQ and ImageNet
in Table 2, and a qualitative comparison in Figure 6. We
delegate further experiments, such as evaluations on subsets
of FFHQ used in other works, additional qualitative com-
parisons, and details of the implementation to Appendix D,
E and F.

We find that DCS either outperforms, or is comparable to
all existing methods. While some methods may excel at
certain metrics in certain tasks and fail to recover the signal
at other times, DCS is consistently performs well across
experiments. For example, DCS is one of few methods
that has reasonable results on Motion Deblurring at high
noise levels. DDNM and RED-Diff, on the other hand,
are powerful across inpainting tasks in general, but fail
to perform Motion Deblurring and show underwhelming
qualitative performance on many tasks, especially in the
high noise regime (Figures 5, 6).

We also notice that DCS provides a significant speedup and
reduction in memory footprint compared to most methods,

Figure 8: DCS performance across several choices of opti-
mizers. LPIPS score of the predicted x0 images is plotted
against the natural log of learning rate scaling factor for
each optimizer.

as noted in Table 1. We achieve this by not requiring back-
propagation of the score network, as well as limiting the
required number of neural function evaluations by using the
measurement-consistent version of Tweedie’s formula.

4.1. Higher Noise Levels

We investigate the noise-robustness of DCS by running the
same benchmarks at higher noise levels. We display quan-
titative results for FFHQ and ImageNet datasets in Table 2
at σy = 0.1 (where experimental settings outside of noise
level are kept identical to the previous section), and qualita-
tive results for the FFHQ dataset in Figure 5. We again see
DCS achieve comparable or superior results at every task.
Projection methods such as DDNM and DDRM further de-
teriorate, as they overfit and attempt to reproduce the noise.
Other methods such as LGD-MC degrade more gracefully,
however we can see from qualitative examples that they are
likely underfitting in all regimes, and therefore only gain
noise-robustness by sacrificing performance at lower noise
levels. Both DCS and DPS strike a much clearer balance
between overfitting and underfitting, which is apparent from
quantitative results as well as qualitative results in Figures 5
and 6.

4.2. Ablation on the Noise-aware Maximization
Optimizer

We investigate how the choice of optimizer and parameters
affects the noise-aware maximization algorithm in DCS.
We note that the flexibility of using an optimizer enables
us to make use of a frequentist stopping criterion as de-
tailed in Section 3. In Figure 8 we run DCS with AdamW
(Loshchilov et al., 2017), SGD with momentum, and vanilla
SGD to solve the SRx4 task on a subset of FFHQ. Runs of
each optimizer at learning rate scaling factors are displayed
to show the best performance, ensuring a fair comparison.
It is clear in Figure 8 that the addition of a momentum term
to the optimization process (both present in AdamW and
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Table 2: Quantitative comparison on FFHQ 256x256-1K and ImageNet-1K datasets across various inverse problem tasks
and noise levels (σy ∈ {0.01, 0.1}).

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.137 30.14 19.45 0.024 34.84 21.19 0.088 25.11 19.25 0.103 28.69 22.62 0.087 29.48 26.67

DDRM 0.502 13.00 222.5 0.393 15.94 163.9 0.472 12.15 209.2 - - - - - -
MCG 0.144 24.84 31.47 0.073 30.59 22.22 0.453 15.44 185.54 0.209 23.51 67.88 0.217 22.93 292.1
DDNM 0.208 26.28 51.33 0.040 33.08 23.35 0.209 18.12 88.32 0.235 26.09 71.47 0.424 14.22 250.9
LGD-MC 0.238 23.45 39.55 0.272 23.46 57.70 0.372 15.45 86.00 0.405 18.78 64.31 0.520 13.90 106.0
DPS 0.163 25.91 33.21 0.105 29.54 29.72 0.113 23.52 24.41 0.129 26.48 26.85 0.159 24.41 29.84
RED-Diff 0.178 29.81 45.68 0.035 33.72 25.03 0.090 25.20 19.98 0.234 29.72 52.09 0.191 29.14 116.9

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.175 24.88 30.11 0.149 27.54 32.80 0.163 23.22 26.44 0.176 25.96 26.08 0.224 24.61 31.40

DDRM 0.785 6.327 271.7 0.602 11.00 255.9 0.632 9.636 288.1 - - - - - -
MCG 0.546 20.44 102.6 0.227 26.00 50.40 0.579 15.30 207.2 0.429 25.80 69.29 0.973 -7.104 295.3
DDNM 0.623 21.49 145.9 0.179 24.96 39.18 0.334 19.20 72.11 1.220 10.73 176.8 0.739 5.099 524.0
LGD-MC 0.256 22.31 39.58 0.288 22.22 56.05 0.384 15.38 87.72 0.415 18.30 66.04 0.524 13.65 105.4
DPS 0.185 24.79 35.46 0.157 26.72 35.24 0.158 22.58 32.47 0.180 24.720 33.53 0.212 22.41 35.09
RED-Diff 0.665 22.10 155.1 0.155 28.62 34.78 0.298 22.96 61.14 0.447 26.93 106.3 0.423 24.16 120.1

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.238 23.45 39.41 0.142 26.06 34.46 0.230 20.63 37.11 0.253 24.22 38.96 0.203 24.62 38.63

DDRM 0.907 6.592 277.8 0.835 10.15 215.8 0.758 11.70 198.8 - - - - - -
MCG 0.638 15.62 89.39 0.198 24.34 35.19 0.273 16.68 80.35 0.645 21.18 124.6 0.980 -5.726 231.1
DDNM 0.333 25.16 51.33 0.084 28.35 20.27 0.258 17.42 85.41 0.456 24.35 67.98 0.694 5.721 304.2
LGD-MC 0.662 14.460 113.5 0.650 14.57 129.8 0.696 11.63 133.9 0.796 10.46 165.7 0.807 9.609 184.7
DPS 0.309 23.99 49.81 0.266 25.05 38.87 0.301 18.76 34.85 0.493 19.14 61.59 0.460 18.65 53.21
RED-Diff 0.386 25.07 57.06 0.090 28.17 16.71 0.239 19.99 54.38 0.459 24.70 68.71 0.376 23.66 55.77

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.402 22.99 48.21 0.166 26.04 34.47 0.243 19.70 46.03 0.407 22.28 51.13 0.435 20.43 61.48

DDRM 0.985 5.981 425.8 0.937 7.391 358.1 0.841 8.646 241.0 - - - - - -
MCG 0.886 14.01 145.1 0.459 19.92 78.86 0.433 15.63 124.0 0.650 22.00 117.4 0.984 -6.868 231.3
DDNM 0.751 20.98 133.3 0.1693 25.63 35.72 0.400 18.06 110.8 1.221 9.602 202.7 0.783 5.009 350.1
LGD-MC 0.671 14.01 116.51 0.661 14.19 131.2 0.701 11.53 134.58 0.804 10.44 167.3 0.806 9.587 185.4
DPS 0.540 18.63 85.06 0.506 20.10 82.74 0.479 18.03 83.06 0.412 20.57 65.07 0.450 18.91 75.65
RED-Diff 0.747 20.66 136.35 0.167 25.38 32.99 0.374 19.68 88.20 0.660 23.19 110.9 0.591 21.27 138.8

SGD with momentum) can attain a higher level of image
fidelity and solver stability than vanilla SGD. This provides
empirical evidence for optimizer bias having an effect on
solver performance in DCS. We see from this experiment
that AdamW produces the most consistent results across
learning rates, which motivates its use in our implementa-
tion.

4.3. Improvement on Jacobian-Free Implementations

A major gain in the empirical performance of DCS comes
from the fact that it no longer requires backpropagations
through the neural score function, which allows for reduc-
tions in both runtime and memory footprint. In theory, most
diffusion-based solvers can be modified to remove this neu-
ral backpropagation step by applying a stop gradient
to the score function output (e.g., RED-Diff (Mardani et al.,
2024)). We compare against RED-Diff in the main text, and
additionally against ablated variants of DPS (Chung et al.,
2022a) and LGD (Song et al., 2023b) in Appendix D.2, and

demonstrate clear improvements on these methods.

5. Conclusion
We proposed an effective adjustment to the diffusion-based
inverse problem solver framework in the literature that im-
proves speed and stability. Observing that the marginals of
the diffusion process which solves the inverse problem is
Gaussian distributed at each time t, we derived a simple,
single-parameter likelihood model, whose sole unknown
variate is obtained via a tractable maximum likelihood esti-
mation algorithm. We leveraged this new perspective to cre-
ate a noise-aware maximization scheme, and demonstrated
the effectiveness of our method via a suite of numerical
experiments, and qualitative comparisons.

Impact Statement Our work proposes a significant im-
provement to a general framework for noise-robust guided
generation via diffusion models. While the inverse problems
we study in this work are not pernicious in nature, many ma-
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licious tasks can be framed as inverse problems, including
deepfake generation. Therefore, we hope that researchers
and practitioners keep this in mind when implementing and
applying the methods proposed in this work, and when ap-
plying techniques in the general research area of inverse
problems at large.
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A. Background and Related Work
A.1. Diffusion Models

Inspired by non-equilibrium thermodynamics, denoising diffusion probabilistic models (Ho et al., 2020) convert data
x0 ∼ pdata(x) to noise xT ∼ N (0, I) via a diffusion process described by the variance-preserving stochastic differential
equation (VP-SDE)

dx = −β(t)

2
xdt+

√
β(t)dw, (15)

where β(t) : R→ [0, 1] is a monotonically increasing noise schedule and w is the standard Wiener process (Song et al.,
2020b). This leads to the marginal distribution

pt(xt) = Ex0∼pdata

[
N (xt;

√
αtx0, (1− αt)︸ ︷︷ ︸

σ2
t

I)
]
, αt = e−

1
2

∫ t
0
β(s)ds, (16)

where N ( · ;µ,Σ) is the probability density function (pdf) of a normal distribution centered at µ with covariance Σ.
Sampling from pdata(x) can then occur by modeling the reverse diffusion, which has a simple form given by (Anderson,
1982)

dx =

[
−β(t)

2
x− β(t)∇x log pt(xt)

]
dt+

√
β(t)dw, (17)

with reverse-time Wiener process w and score function ∇x log pt(xt). Therefore, diffusion model training consists of
approximating the score function with a model

sθ(xt, t) ≈ ∇x log pt(xt), (18)

and sampling consists of obtaining solutions to the reverse-time SDE (17) with numerical solvers. A simple approach is
given by the DDIM sampler with σt =

√
1− αt (Song et al., 2020a)

xt−1 =
√
αt−1

xt + σ2
t∇ log pt(xt)√

αt
+ σt−1ϵ. (19)

A.2. Solving Inverse Problems with Diffusion Models

When solving inverse problems with diffusion models, the aim is to leverage information from y to define a modified
reverse diffusion process

xT ,xT−1, . . . ,x1,x0, (20)

such that xt coincides with the desired x (Eq. 1) precisely at t = 0. Previous approaches can generally be sorted into two
categories, which we designate posterior solvers and projection solvers.

Posterior Solvers An intuitive approach is leveraging Bayes’ rule to sample from the posterior distribution given a prior
pt(xt) and observation y:

xt ∼ p(xt|y) =
p(y|xt)p(xt)

p(y)
. (21)

Taking logs and gradients of both sides of the equation, we obtain a form of the conditional density that can be accurately
approximated with the modeled score function

∇ log p(xt|y) = ∇ log p(y|xt) +∇ log p(xt) ≈ ∇ log p(y|xt) + sθ(xt, t), (22)

and describes the core method of the DPS algorithm (Chung et al., 2022a). This strategy can also be extended to latent
diffusion models, resulting in Latent-DPS and PSLD (Rout et al., 2023). Generally, the conditional term ∇ log p(y|xt)
cannot be exact due to reasons we will investigate subsequently in Section 2, though these approximations are improved
in LGD (Song et al., 2023b) and STSL (Rout et al., 2024). More recent work (Sun et al., 2024) propose an annealed
Monte-Carlo-based perspective to posterior sampling, which results in a very similar algorithm to DPS. Much like MCG
and ReSample (discussed in the next category), posterior solvers require estimating ∂

∂xt
x0 which involves backpropagation

through the diffusion model, and significantly increases runtime and hampers scalability compared to unconditional sampling.
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Projection Solvers Another approach involves guiding the reverse diffusion process by directly projecting xt onto a
manifoldM = {x : A(x) = y} ⊆ Rd at each time step, i.e.

x′
t = Px̂0[xt] (23)

xt−1 =
√
αt−1

x′
t + σ2

t∇ log p(x′
t|x̂0[xt])√

αt
+ σt−1ϵ. (24)

Where x̂0[xt] is some prediction of x0 given only xt (we elaborate in Section 2), and P is either a projection onto the
low rank subspace or range of A. The resulting algorithms are DDRM (Kawar et al., 2022) and DDNM (Wang et al.,
2022), respectively. Of course, this strategy is often restricted to situations where two conditions simultaneously hold
true: (1) the measurement operator A is linear, and (2) the inverse problem is noiseless, i.e, η is identically 0. These
assumptions drastically limit the applicability of such models. The linearity restriction can be lifted by taking derivatives the
measurement discrepancy, as in MCG (Chung et al., 2022b) and ReSample (Song et al., 2024), though this comes at the
cost of significantly increased computation, requiring ∂

∂xt
x0 which involves backpropagating through the score network.

Finally, (Cardoso et al., 2023) straddles the line between both categories — while MCGdiff is ostensibly a Bayesian solver,
it bears greater resemblance to projection solvers since it does not form the decomposition in Eq. 22 and also samples
by projecting each iterate to the null-space of A, thus implementing a projected n-particle sequential monte carlo (SMC)
sampling algorithm.

A Maximum Likelihood Solver We take a different perspective on solving the inverse problem. As seen in Section 2, both
projection and posterior solvers must quantify the discrepancy between xt and y via the consistency error ||A(x0)− y|| at
each diffusion step. Due to the complexity of the diffusion process, this involves approximating a fundamentally intractable
quantity. In Section 3, we construct a simpler process whose parameters can be obtained via maximum likelihood estimation.
Unlike the evidence lower bound proposed in (Mardani et al., 2024), we derive an explicit likelihood model, which is
amenable to an optimization scheme with a probabilistic noise-aware stopping criterion. Finally, we show that the resulting
algorithm is simple, fast, and adaptable to noise.

B. Additional Theorems and Proofs
B.1. Proof of Tweedie’s Formula

For completeness, we include the statement and proof for Tweedie’s formula.

Theorem B.1 (Tweedie’s Formula). Let x0 be a sample drawn from a distribution p(x0). Then for any

xt = αtx0 + σtz z ∼ N (0, I) (25)

drawn from the marginal of the diffusion process on p(x0) at time t, the posterior mean given xt is

E[x0|xt] =
1

αt

[
xt + σ2

t∇ log pt(xt)
]
. (26)

Proof (of Lemma B.1). Let ϕσ be the pdf ofN (0, σI). We first note that the marginal distribution at time t can be written as

pt(xt) = (pαt ∗ ϕσt) (xt) =

∫
ϕσt(xt − x)pαt(x)dx, (27)

where

pαt
(x|y) = 1

αt
p
(
α−1
t x

)
(28)
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due to the probabilistic change-of-variables formula. Letting x′ = αtx0, we have the equality

E[x′|xt,y]− xt

σ2
t

=

∫
x′ − xt

σ2
t

p(x′|xt)dx
′

=

∫
x′ − xt

σ2
t

p(x′,xt)

p(xt)
dx′

=

∫
αtx0 − xt

σ2
t

ϕσt
(xt − x′)pαt

(x′)∫
ϕσt(xt − x)pαt(x)dx

dx′

=

∫
[∇xt

ϕσt
(xt − x′)]

ϕσt(xt − x′)pαt(x
′)∫

ϕσt
(xt − x)pαt

(x)dx
dx′

= ∇xt
log [ϕσt

(xt − x′)pαt
(x′)]

= ∇ log pt(xt).

Re-arranging terms on either side of the equation, we obtain

E[x′|xt] = xt + σ2
t∇ log pt(xt). (29)

Finally, we expand x′ = αtx0 and invoke the linearity of the expectation to arrive at

E[x0|xt] =
1

αt

[
xt + σ2

t∇ log pt(xt|y)
]
. (30)

as desired.

B.2. Proof for Theorem 2.1 (xt ∼ N (µ(x0), σ
2
t I) ⇐⇒ E[x0|xt] = x0)

We demonstrate sufficiency of the Gaussian-distributed condition by proving Lemma B.2.

Lemma B.2 (Sufficent condition). Let x0 be given. Suppose xt is distributed as

pt(xt) = N (xt;
√
αtx0, 1− αt︸ ︷︷ ︸

σ2
t

I). (31)

Then x0 can be recovered via

x0 =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt)

]
. (32)

Proof (of Lemma B.2).

1
√
αt

[
xt + σ2

t∇xt
log pt(xt)

]
=

1
√
αt

[
xt −∇xt

σ2
t

1

2σ2
t

||xt −
√
αtx0||22

]
(33)

=
1
√
αt

[xt − (xt −
√
αtx0)] (34)

= x0. (35)

To demonstrate the necessary condition, we show that the inverse of Lemma B.2 also holds.

Lemma B.3 (Necessary condition). If x0 can be recovered via Eq. 32, then pt(xt|x0) takes the form Eq. 31.

Proof (of Lemma B.3). Suppose that

x0 =
1
√
αt

[
xt + σ2

t∇xt log pt(xt)
]

(36)
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Then we may re-arrange terms, obtaining
√
αtx0 − xt

σ2
t

= ∇xt
log pt(xt). (37)

Taking the anti-derivative of both sides, we conclude that

log pt(xt) =
1

2σ2
t

||xt −
√
αtx0||22 + C. (38)

Since log pt(xt|x0) can only take this form when pt(xt|x0) is a simple isotropic Gaussian distribution, we conclude our
proof.

Proof (of Theorem 2.1). First, we note that Tweedie’s formula (Efron, 2011) tells us that the posterior mean of a data
distribution xt ∼ pt(xt|x0) can be obtained via the relation

E[x0|xt] =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt)

]
. (39)

Then, since Lemmas B.2 and B.3 are converses of each other, we demonstrate that the conditions stated in Lemma B.2 are
necessary and sufficient.

B.3. Proof for Theorem 3.1 (xt ∼ N (µ(x0,y), σ
2
t I) ⇐⇒ E[x0|xt,y] = x0)

First, we show that the measurement conditional Tweedie’s formula holds for a given diffusion variate xt and measurement
y .

Theorem B.4 (Conditional Tweedie’s Formula). Let x0 be a sample drawn from a conditional distribution p(x0|y). Then
for any

xt = αtx0 + σtz z ∼ N (0, I) (40)

drawn from the marginal of the diffusion process on p(x0|y) at time t, the conditional posterior mean given xt is

E[x0|xt,y] =
1

αt

[
xt + σ2

t∇ log pt(xt|y)
]
. (41)

Proof (of Lemma B.4). Let ϕσ be the pdf ofN (0, σI). We first note that the marginal distribution at time t can be written as

pt(xt|y) = (pαt
(·|y) ∗ ϕσt

) (xt) =

∫
ϕσt

(xt − x)pαt
(x|y)dx, (42)

where
pαt

(x|y) = 1

αt
p
(
α−1
t x|y

)
(43)

due to the probabilistic change-of-variables formula. Letting x′ = αtx0, we have the equality

E[x′|xt,y]− xt

σ2
t

=

∫
x′ − xt

σ2
t

p(x′|xt,y)dx
′

=

∫
x′ − xt

σ2
t

p(x′,xt|y)
p(xt|y)

dx′

=

∫
αtx0 − xt

σ2
t

ϕσt(xt − x′)pαt(x
′|y)∫

ϕσt
(xt − x)pαt

(x|y)dx
dx′

=

∫
[∇xtϕσt(xt − x′)]

ϕσt
(xt − x′)pαt

(x′|y)∫
ϕσt

(xt − x)pαt
(x|y)dx

dx′

= ∇xt
log [ϕσt

(xt − x′)pαt
(x′|y)]

= ∇ log pt(xt|y).
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Re-arranging terms on either side of the equation, we obtain

E[x′|xt,y] = xt + σ2
t∇ log pt(xt|y). (44)

Finally, we expand x′ = αtx0 and invoke the linearity of the expectation to arrive at

E[x0|xt,y] =
1

αt

[
xt + σ2

t∇ log pt(xt|y)
]
. (45)

as desired.

Now, the main theorem follows.

Proof (of Theorem 2.1). We note that the proofs for Lemmas B.2 and B.3 remain the same if we let pt(xt|x0) = pt(xt|x0,y).
Thus we again observe that the proofs for Lemmas B.2 and B.3 are converses of each other, and demonstrate that the
conditions stated in Lemma B.2 are necessary and sufficient.

B.4. Theorems for Sufficiency

We set up Theorems to show that the estimator in Eq. 11 is a sufficient statistic under different properties of A. Letting f(y)
be the function that obtains∇ log pt(xt|x0) via Eq. 11, we show that y is measurable under the sigma algebra induced by
the measurement f .

Intuitively, we demonstrate that f(y) contains as much information as possible about the underlying signal x0 as can be
gathered via y. The theoretical and intuitive statements can be summarized by the simple conditional equivalence

p(y|ϵy∗) = p(y|x0). (46)

In Theorem 3.2, we consider two simple and theoretically similar cases: when y = A(x) is noise-free, and when A is linear.
We restate it here in a less condensed form for clarity:
Theorem 3.2. Let y = A(x0) + η be an observation from the forward measurement model, and let

ϵy∗ = argmax
ϵy

log p

(
y

∣∣∣∣ 1
√
αt

(xt + σ2
t ϵy)

)
. (47)

Then
p(y|ϵy∗) = p(y|x0). (48)

given that either η = 0, or A is linear.

We now investigate the general noisy case where A is allowed to be nonlinear. We find that our results can still be quite
general: we only need to assume A surjective, meaning that there exists some x ∈ domain(A) such that A(x) = y. In
fact, this result is slightly stronger — we are able to show that sufficiency holds for A that are compositions of linear and
surjective functions.

Theorem B.5. Let ϵy∗ be as defined in Theorem 3.2. Suppose the twice-differentiable operator A := PT ◦ ϕ is composed
of P : Rd → Rr, a linear projection, and ϕ : Rn → Rr, an arbitrary surjective function. We have that

p(y|ϵy∗) = p(y|x0). (49)

To prove Theorems 3.2 and B.5, we establish the following Lemma which characterizes useful information about x∗
0.

Lemma B.6. Suppose y ∈ Rk is fixed, xt ∈ Rn, with twice differentiable linear operator A : Rn → Rk. Then, for
ϵy = ∇xt log pt(xt|x0) which maximizes p(y|x0), the following holds true:

1. if η = 0 (i.e. the noiseless regime), A(x0) = A(xt + σ2
t ϵy

∗)

2. if A is surjective, A(x0) = A(xt + σ2
t ϵy

∗)
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3. if A is linear, ⟨y −A(xt + σ2
t ϵy

∗),A(xt + σ2
t ϵy

∗)−A(x0)⟩ = 0.

An interpretation of statement 3 reads that the optimal solution ϵy
∗ for estimating x0 is orthogonal to the error to y in the

linear case. The requirements of statement 3 may be relaxed to the statement A(x)−A(z) is in the range of the Jacobian of
A at z, however this is less intuitive than linearity. We avoid invoking linearity of A as long as possible to illustrate the fact
that other transformations may share this property as well.

Proof (of Lemma B.6). We will make use of the bijective mapping z 7→ xt + σ2
t ϵy, and charactarize the minima which

maximize log p(y|x0). We can solve the optimization problem,

argmin
z

||y −A(z)||22

A minima to this objective can be characterized by the first order necessary condition,

∇z||y −A(z)||22 = −2Jz[A](z)T (y −A(z))
= −2Jz[A](z)T (A(x0)− η −A(z)) := 0.

We can confirm it is a minima by checking the solution of the above with,

Hz

[
||y −A(z)||22

]
(z∗) = 2∇z

[
Jz[A](z)T (A(x0) + η)

]
(z∗)

= 2Jz[A](z∗)TJz[A](z∗) +
k∑

j=1

Hz[A(j)](z
∗) (y −A(z∗))

≽ 0.

If η = 0, we have that A(x0) = y, and therefore choosing any A(z∗) = A(x0) satisfies the first order condition. The
second order condition is furthermore satisfied, as y −A(z∗) = 0, meaning,

Hz

[
||y −A(z)||22

]
(z∗) = 2Jz[A](z∗)TJz[A](z∗) ≽ 0.

This satisfies statement 1. Statement 2 is satisfied similarly, by choosing the same z. Note that this case differs, in that
z = x0 is no longer necessarily a valid solution.

Statement 3, is already satisfied in the cases where A has rank equal to the dimension of its co-domain (if d = n, this is
equivalent to being full rank), since y −A(z∗) = 0. Therefore we assume A is low-rank to prove the remaining cases.

To show orthogonality between y − A(z∗) and A(z∗) − A(x0) in other cases, we let η = δ + δ⊥. We can choose an
optimal value for δ⊥ that satisfies δ∗⊥ = inf

δ⊥

{
||y −A(z∗)− δ⊥||22

}
, for the optimal value, z∗. Due to the non-negativity

and 0 preserving properties of norms, we have,

δ∗⊥ = y −A(z∗)
= A(x0) + η −A(z∗)
= A(x0) + δ∗⊥ + δ∗ −A(z∗)

=⇒ δ∗ = A(z∗)−A(x0).

At the optima of the original objective, z∗, the first order necessary condition dictates that,

16



Measurement Consistent Tweedie’s: Solving Inverse Problems with the Conditional Posterior Mean

Jz[A](z∗)T (y −A(z∗)) = Jz[A](z∗)T δ∗⊥ := 0.

For a linear A, the Jacobian is constant, so let Jz[A] = J. Therefore, JT δ∗⊥ = 0, meaning δ∗⊥ ∈ N (JT ).

Simultaneously, since δ∗ = A(x) − A(z∗) = A(x − z∗) = J(x − z∗), we have δ∗ ∈ R(JT ). Therefore due to the
orthogonality of range and null spaces of a matrix, ⟨δ∗⊥, δ∗⟩ = 0, completing the proof.

We are now able to prove the theorems in the main text.

Proof of Theorem 3.2. We leverage the theory of sufficient statistics to demonstrate our result. Namely, if ϵy∗ is a sufficient
statistic for y, then,

p(y|ϵy∗) = p(y|ϵy∗,x0) = p(y|x0). (50)

Therefore it suffices to demonstrate that ϵy∗ is a sufficient statistic for y.

By the Neyman-Fisher Factorization theorem, we have that a necessary and sufficient condition is if there exists non-negative
functions gθ and h such that

p(y|x0) = g(ϵy∗,x0)h(y). (51)

We observe that since η ∼ N (0, σ2
yI), our random variable y can be characterized by the density function

p(y|x0) = N (y;µ = A(x0),Σ = σ2
yI). (52)

Therefore, letting yϵy∗
= A( 1√

αt
(xt + σ2

t ϵy∗)), we can write

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(53)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

(
||y − yϵy∗

||22 + ||yϵy∗
−A(x0)||22 + 2⟨y − yϵy∗

,yϵy∗
−A(x0)⟩

))
(54)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||yϵy∗
−A(x0)||22

)
exp

(
− 1

2σ2
y

||y − yϵy∗
||22

)
, (55)

where the third equality is due to Lemma B.6. In the case that A is surjective, or the noiseless regime, statements 2 and 1
respectively satisfy the equality above trivially, as y = yϵy∗

. If the operator is otherwise linear, statement 3 shows the cross
term vanishes.

Therefore, we can assign

g(ϵy∗,x0) = (2πσ2
y)

−n/2 exp

(
1

2σ2
y

||yϵy∗
−A(x0)||22

)
(56)

h(y) = exp

(
1

2σ2
y

||y − yϵy∗
||22

)
. (57)

In the case where the measurement process A(x) = y is noiseless, this implies h(y) = 1.

We now modify the argument in order to relax the linearity assumption.

Proof of Theorem B.5. Let z = 1√
αt

(
xt + σ2

t ϵy
)
, and z∗ = argmin

z
{||y −A(z)||}.

Since z∗ minimizes the objective ||y −A(z)||, we also have that,
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ϕ(z∗) := argmin
α

{
||y −PT (α)||

}
= argmax

α
p(y|α).

We can invoke Lemma B.6 to say

||y −PTϕ(x0)||22 = ||y −PTϕ(z∗)||22 + ||PTϕ(z∗)−PTϕ(x0)||22,

since PT is a linear operator, and ϕ(z∗) satisfies the conditions in the lemma. Therefore, we have,

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(x0)||22
)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)
.

We assign terms,

g(z∗,x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)

(58)

h(y) = exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
, (59)

(60)

and once again invoke the Neyman-Fisher Factorization theorem to show z∗ is sufficient for y. Since ϵy∗ is a bijective
mapping from z∗, we have that ϵy∗ is sufficient, and similarly to Theorem 3.2 we state, p(y|ϵy∗) = p(y|ϵy∗,x0) =
p(y|x0).

Finally, we note that this proof provides necessary conditions, but not sufficient conditions for the sufficiency of DCS’s
estimator. In this work, we do not investigate operators outside of the scope of Theorem B.5, there are potentially even
weaker conditions on A that exist.

C. Invertibility of A
Often, A is simply non-invertible (e.g. for super-resolution, inpainting, phase retrieval, and sparse MRI reconstruction
tasks). With other tasks such as signal deblurring, the invertibility of A is often mathematically possible, but not numerically
stable. In theory, blurring operator can be represented as convolution operators on the signal x. Theorefore, the convolution
theorem tells us that inverting a blurring operator G(∗) on x is as simple as taking the quotient of the convolved signal
y = A(x) against the convolution kernel in the frequency domain, i.e.,

x = F−1[F(y)/F(G)] = y ∗ F−1[F(G)−1] (61)

where F denotes the Fourier operator. However, in practice, there are implicit assumptions in 61, such as the computability
of F(G) and the existence of F(G)−1, that may not always hold. In particular, blur kernels are often truncated in practice,
resulting in highly ill-conditioned (or compactly supported) F(G) in the frequency domain, and numerical unstable (or
non-existent) inverses. Ultimately, directly inverting A often fails to produce the highest quality results, even though it is
possible.
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Table 3: Description of latent and Jacobian-free solvers used for comparisons in text. For each solver we list the type (as
described in Section A.2), optimization space (pixel or latent), whether it requires backpropagation through a neural function
evaluation (NFE, i.e., the score network call), as well as runtime and memory footprint.

Solver Type Space No NFE
Backprop Runtime Memory

DCS (Ours) Hybrid Pixel ✓ 1x 1x

Latent-DPS (Chung et al., 2023) 3 Posterior Latent ✗ 6.1x 8.9x
PSLD (Rout et al., 2023) Posterior Latent ✗ 7.5x 15x
STSL (Rout et al., 2024) Posterior Latent ✗ 1.85x 9x
ReSample (Song et al., 2024) Projection Latent ✓4 29.5x 8.95x

DPS-JF (Chung et al., 2023) Posterior Pixel ✓ 1.5x 1.1x
LGD-MC (n=10) (Song et al., 2023b) Posterior Pixel ✗ 6x 3.2x
LGD-MC-JF (n=10) (Song et al., 2023b) Posterior Pixel ✗ 2x 1.1x

D. Additional Experiments
In this section, we provide further comparisons against latent and Jacobian-free methods (Table 3).

D.1. Comparison against Latent Models (Table 4)

We show that our pixel-based model also performs favorably against latent models in Table 4. We retain the same
experimental setting on pixel-based models as in Table 2. For FFHQ, we use the pretrained FFHQ model weights from
(Chung et al., 2022a) for our method, and the pretrained FFHQ model with a VQ-F4 first stage model (Rombach et al., 2022)
in latent space models. For ImageNet, we again use pretrained model weights from (Chung et al., 2022a) in pixel-based
diffusion solvers, and the Stable Diffusion v1.5 latent model for latent solvers. As with pixel-based methods many existing
works suffer in the presence of additional noise. Further implementation details are discussed in Appendix E.

D.2. Comparison against other Jacobian-Free Methods (Table 5)

A major advantage of DCS is the fact that it is Jacobian-free (Section 3.4) — this results in at least 6× reduction in memory
cost during inference compared with Jacobian-based methods, which can be a major enabling factor for the adoption of such
algorithms on consumer GPUs and edge devices. However, naively removing the backpropagation through the score network
can reduce the quality of the measurement consistency correction step in inverse solvers. In this experiment, we demonstrate
that our treatment via the maximum likelihood framework and the noise-aware maximization results in significantly higher
quality samples, compared to a naive implementation in DPS-JF and LGD-JF, which are both Jacobian-free variants of the
original algorithms (Chung et al., 2022a) and (Song et al., 2023a). Namely, we approximate the Jacobian with respect to the
input to the denoising network (left hand side) by the Jacobian with respect to the predicted x0 (right hand side)

∂

∂xt
||y −A(x̂)||22 ≈

∂

∂x̂
||y −A(x̂)||22, (62)

where x̂ = f(xt, ϵθ(xt, t)) and f is an algorithm-dependent function of xt and its score. (Note that the right hand side no
longer involves backpropagation through f and therefore ϵθ).

3Latent-DPS is a direct application of DPS (Chung et al., 2023) to latent diffusion models. It is also mentioned in (Rout et al., 2023).
4As described in (Song et al., 2024), ReSample does not run backpropagation on the score network, however the implementation does

(Appendix E.4).
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Table 4: Quantitative comparison against latent models on FFHQ 256x256-1K and ImageNet-1K datasets across various
inverse problem tasks and noise levels (σy ∈ {0.01, 0.1}).

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.137 30.138 19.45 0.024 34.839 21.19 0.088 25.112 19.25 0.103 28.688 22.62 0.087 29.480 26.67

Latent-DPS 0.324 20.086 100.27 0.249 22.64 297.43 0.227 22.184 211.23 0.390 25.608 321.5 0.950 -6.753 354.95
PSLD 0.311 20.547 42.26 0.250 22.84 214.08 0.221 22.23 204.87 0.200 23.77 318.20 0.213 23.277 359.40
STSL 0.614 16.063 327.38 0.476 17.859 190.64 0.436 11.843 190.64 0.583 15.196 364.07 0.604 10.095 388.68
ReSample 0.221 24.699 48.87 0.467 22.488 96.89 0.247 20.852 50.3 0.191 27.151 46.5 0.281 25.138 65.06

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.1748 24.879 30.107 0.1490 27.536 32.800 0.1631 23.217 26.444 0.1763 25.955 26.083 0.2238 24.612 31.400

Latent-DPS 0.3444 19.971 45.052 0.4455 18.117 109.83 0.6410 11.365 326.75 0.6398 13.762 330.93 0.6360 12.524 334.43
PSLD 0.3481 19.251 47.864 0.3105 20.588 41.737 0.3121 19.874 40.428 0.2897 21.068 36.600 0.3307 19.224 40.374
STSL 0.3161 20.279 40.163 0.3722 19.247 54.648 0.5481 13.864 183.00 0.5137 16.411 169.32 0.5188 15.463 163.65
ReSample 0.2613 24.184 50.224 0.5267 21.575 103.62 0.2789 20.581 53.263 0.2984 23.980 56.489 0.6456 19.912 110.42

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.238 23.452 39.41 0.142 26.063 34.46 0.230 20.625 37.11 0.253 24.218 38.96 0.203 24.619 38.63

Latent-DPS 0.642 17.973 144.82 0.603 19.881 144.81 0.751 11.964 138.33 0.805 10.532 139.62 0.821 10.697 150.49
PSLD 0.380 22.690 168.08 0.306 24.167 125.25 0.330 18.290 156.30 0.397 23.076 134.18 0.453 21.576 187.21
STSL 0.617 19.682 143.62 0.599 20.500 137.09 0.832 9.560 170.93 0.869 8.708 183.38 0.882 8.527 195.74
ReSample 0.552 20.260 133.42 0.820 17.775 229.82 0.504 16.795 138.97 0.513 21.578 116.04 0.573 20.430 145.67

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.4015 22.988 48.211 0.1655 26.043 34.469 0.2428 19.697 46.026 0.4068 22.283 51.131 0.4348 20.428 61.48

Latent-DPS 0.7257 15.676 147.65 0.7973 9.4153 146.69 0.7980 9.3345 146.51 0.7988 9.3032 193.84 0.8525 9.1369 170.08
PSLD 0.4731 20.875 130.99 0.6068 19.668 145.51 0.7028 13.909 146.74 0.7372 14.181 139.90 0.7504 13.767 149.75
ReSample 0.6514 18.997 155.26 0.9654 13.612 281.82 0.5980 15.843 168.06 0.6814 19.233 173.72 1.0461 15.249 223.52

Table 5: Quantitative comparison against other Jacobian-free methods on FFHQ 256x256-1K and ImageNet-1K datasets
across various inverse problem tasks and noise levels (σy ∈ {0.01, 0.1}).

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.137 30.138 19.45 0.024 34.839 21.19 0.088 25.112 19.25 0.103 28.688 22.62 0.087 29.480 26.67

DPS-JF 0.488 14.193 44.98 0.335 19.566 58.45 0.178 20.118 28.10 0.211 23.063 34.42 0.289 19.927 40.94
DPS-JF (T = 100) 0.589 9.473 41.24 0.578 10.072 42.06 0.571 10.618 43.08 0.563 10.859 43.77 0.566 10.922 41.26
LGD-MC-JF 0.566 10.502 41.25 0.537 12.154 43.85 0.497 13.811 46.40 0.452 15.569 46.22 0.457 15.466 46.08
LGD-MC-JF (T = 100) 0.593 9.346 40.60 0.587 9.688 40.99 0.581 10.126 42.30 0.574 10.273 40.59 0.574 10.364 40.51
DDNM 0.208 26.277 51.33 0.040 33.076 23.35 0.209 18.118 88.32 0.235 26.086 71.47 0.424 14.221 250.92
DDRM 0.502 13.002 222.45 0.393 15.935 163.91 0.472 12.148 209.18 - - - - - -

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.1748 24.879 30.107 0.1490 27.536 32.800 0.1631 23.217 26.444 0.1763 25.955 26.083 0.2238 24.612 31.400

DPS-JF 0.494 14.111 46.59 0.371 18.310 56.49 0.226 19.451 34.02 0.246 21.808 35.53 0.342 18.339 40.70
DPS-JF (T = 100) 0.589 9.432 40.82 0.582 9.900 39.58 0.572 10.552 42.90 0.564 10.894 42.36 0.568 10.943 42.44
LGD-MC-JF 0.557 11.208 44.86 0.511 13.265 49.07 0.452 15.243 48.68 0.396 17.434 46.76 0.400 17.301 45.53
LGD-MC-JF (T = 100) 0.594 9.324 41.06 0.589 9.655 41.65 0.580 10.107 42.97 0.578 10.334 41.84 0.574 10.312 41.53
DDNM 0.6230 21.493 145.889 0.179 24.964 39.183 0.334 19.195 72.105 1.220 10.727 176.756 0.739 5.099 524.021
DDRM 0.7853 6.3273 271.70 0.6018 10.995 255.95 0.6323 9.6360 288.11 - - - - - -
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Figure 9: A demonstration of our solver, DCS, solving two inverse problems on natural images from the CelebA-HQ dataset.
Motion blur (left), and box dropout (right) are examples of forward operators that are non-invertible. We show further results
in Section 4

D.3. Further Noise Experiments

Table 6: Quantitative experiments on FFHQ 256x256-1K at σy = 0.5. We compare against pixel-based solvers (upper half)
and latent-based solvers (lower half).

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.2287 20.362 100.94 0.2067 22.999 89.312 0.2005 21.298 40.099 0.2109 24.009 82.132 0.2301 22.306 90.403

DPS 0.2000 22.588 92.791 0.2290 22.808 90.739 0.2118 20.278 81.491 0.2268 25.020 83.686 0.2479 20.767 91.972
DDNM 0.7812 9.8324 387.43 0.8721 15.573 233.15 0.9966 12.607 287.79 1.4475 3.5686 408.85 1.3328 3.1782 393.24

ReSample 0.5704 19.948 179.35 0.6892 20.014 200.06 0.4958 17.530 160.47 0.5409 21.166 162.40 0.6380 19.875 194.69

D.4. Subset of FFHQ used in other works

Table 7: Quantitative evaluation of our method on FFHQ 256x256, following the experimental setup of (Song et al., 2024).
We compare against pixel-based solvers (upper half) and latent-based solvers (lower half).

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring Cost

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ Time ↓ Mem. ↓
Ours 0.074 29.51 0.811 0.052 31.13 0.850 0.102 22.07 0.761 0.078 29.92 0.817 0.051 32.32 0.833 1x 1x

DPS 0.132 27.10 0.729 0.084 30.91 0.833 0.107 21.62 0.755 0.090 28.26 0.767 0.108 26.816 0.726 6x 3.2x
MCG 0.112 27.07 0.784 0.877 11.02 0.02 0.905 10.883 0.001 0.176 24.89 0.768 - - - 6.1x 3.2x

DDNM 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.642 8.682 0.165 1.75x 1x

Latent-DPS 0.324 20.086 0.473 0.249 22.64 0.570 0.227 22.184 0.595 0.209 23.512 0.600 0.217 22.930 0.582 6.1x 8.9x
PSLD 0.311 20.547 0.491 0.250 22.84 0.579 0.221 22.23 0.607 0.200 23.77 0.614 0.213 23.277 0.596 7.5x 15x
STSL 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.641 10.17 0.245 1.85x 9x

ReSample 0.090 29.024 0.791 0.053 30.99 0.844 0.156 20.71 0.778 0.113 29.19 0.784 0.197 27.65 0.706 29.5x 8.95x

E. Implementation Details
We provide implementation details of our experiments, as well as those for other experiments we compare against.

E.1. Our Method

Our proposed DCS has just two primary hyperparameters, as described in the table below. First is the number of time steps
T . This has relatively little effect on our model performance on most tasks. However, it is occasionally helpful to increase
T , especially in box inpainting, where there is zero signal from y in the masked region. Here, higher T allows the diffusion
model to obtain a better solution in this unconditional diffusion process. Second, we have the choice of minimizer, which
is by default the Adam optimizer (Kingma and Ba, 2014). However, in the case of linear A, this optimizer can be replaced
by the closed form analytical solution to A(x) = y.

For nearly all experiments, we use the Adam optimizer with 50 optimization steps and a learning rate of 1. The exceptions
are the random inpainting and box inpainting tasks, where there is no conditioning information on the masked pixels. This
requires more denoising steps, as the diffusion process is totally unconditional inside the mask, up to local correlations
learned inside the score network sθ. Here, we use the analytical solver with A† = A. Similarly, for nearly all experiments
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we use T = 50 as found in Table 7, with the exception being random inpainting and box inpainting tasks, where we found
that taking T = 1000 steps improved performance. However, there is little increase in runtime, since the minimization step
is much faster here.

Notation Definition
T The number of diffusion steps used in the sampler.

minimizer The minimizer used to solve for ϵy.

E.2. Latent Models on ImageNet

We note that previous latent models use the pretrained weights in (Rombach et al., 2022) for 256× 256 resolution datasets.
However, there are no published weights in the GitHub repository for unconditional ImageNet, making a fair comparison of
our method against latent models more involved. To this end, we leverage a significantly more powerful Stable Diffusion
v1.5 model, with publicly available weights on HuggingFace for our experiments. The measurements and the output images
are appropriately scaled for a fair comparison.

E.3. STSL

At the time of writing this work, we did not find publicly available code for STSL (Rout et al., 2024). Therefore, we
implement the algorithm ourselves in our codebase, and use the hyperparameters provided in the paper.

E.4. ReSample

We directly use the published code of ReSample (Song et al., 2024) with no changes in our paper. We discuss two notable
aspects of the experiments with ReSample. First, the implementation on GitHub differs from that pseudocode discussed in
the paper. Namely, the pseudocode in the paper describes enforcing latent- and pixel-based consistency occasionally during
an otherwise unconditional sampling process.

In the code we observed that the sampling step taken is actually a DPS (Chung et al., 2022a) sampling step, which includes
a posterior-based guidance step that takes an expensive gradient of the noise function. To see this, note that L255 in
the resample sampling function in ddim.py calls a function measurement cond fn, which is defined at L62
in main.py and passed into the resampling function. This function is a member of the class PosteriorSampling
defined in L53 in condition methods.py. Inspecting this class, we note that it calls torch.autograd.grad on
the diffusion step as a function of x prev (L33 or L39). In other words, a gradient is computed for the measurement norm
with respect to the input to the diffusion model, i.e., a DPS step.

We closely investigated this DPS step in our experiments, ultimately concluding that it has a significant effect on the
performance of the algorithm, and that it was a more fair comparison to include this step, rather than removing it. However,
the inclusion of this sampling step has two primary effects. First, it results in further increases the computation time of
ReSample. Second it reveals that ReSample relies significantly on a posterior-based formulation, applying additional
resampling steps at each stage.

In experiments, we note that ReSample is significantly slower than other algorithms during sampling (see Table 1). For
example, sampling∼ 1000 images with ImageNet takes more than two weeks on an A6000 GPU. Since we run five different
experimental conditions for each dataset, this was an unacceptably long runtime for our academic resources. Therefore, we
reduce the number of diffusion steps T of ReSample in our experiments, from 500 reported in (Song et al., 2024) to 50.
However, we do provide a single experiment from the (Song et al., 2024) paper, where we reproduce the hyperparameters
and dataset (a 100 image subset of FFHQ). We note that (Song et al., 2024) took a subset of the FFHQ dataset, where
performance differed from the full 256×256-1K dataset performance (c.f. Table 2). Since the subset was not published, we
selected a dataset based where ReSample obtained the same performance with its default parameters in (Song et al., 2024)
(Table 7).

E.5. DDRM

We used the version of DDRM which is implemented in the DDNM codebase. While DDRM may theoretically be able to
handle deblurring tasks, due to the high rank of the forward operators, the SVD cannot be explicitly defined in memory, and
no existing code-base for DDRM supplies fast and memory-saving versions of these operators. Because of the relatively
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poor performance of DDRM compared to DDNM, and the fact that DDRM can be considered a subtype of DDNM (see
Appendix of (Wang et al., 2022)), we do not run on deblurring tasks.

F. Further Qualitative Comparisons
We provide further qualitative examples from the FFHQ 256×256-1K and ImageNet 256×256-1K datasets accompanying
our quantitative evaluation in Table 2.
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Figure 10: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-resolution task.
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Figure 11: Comparison against competing works on FFHQ 256×256-1K dataset with the random inpainting task.
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Figure 12: Comparison against competing works on FFHQ 256×256-1K dataset with the box inpainting task.
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Figure 13: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian deblurring task.
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Figure 14: Comparison against competing works on FFHQ 256×256-1K dataset with the motion deblurring task.
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Figure 15: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-resolution task.
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Figure 16: Comparison against competing works on ImageNet 256×256-1K dataset with the random inpainting task.
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Figure 17: Comparison against competing works on FFHQ 256×256-1K dataset with the box inpainting task.
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Figure 18: Comparison against competing works on ImageNet 256×256-1K dataset with the Gaussian deblurring task.
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Figure 19: Comparison against competing works on ImageNet 256×256-1K dataset with the motion deblurring task.

33



Measurement Consistent Tweedie’s: Solving Inverse Problems with the Conditional Posterior Mean

Figure 20: Comparison against competing works on FFHQ 256×256-1K dataset with the random inpainting task at various
noise levels.
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Figure 21: Comparison against competing works on FFHQ 256×256-1K dataset with the box inpainting task at various
noise levels.
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Figure 22: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian deblurring task at various
noise levels.
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Figure 23: Comparison against competing works on FFHQ 256×256-1K dataset with the motion deblurring task at various
noise levels.
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