International Conference On Machine Learning

Jonathan Patsenker^{*1}, Henry Li^{*1}, Yuval Kluger¹

Exponential weight averaging as damped harmonic motion

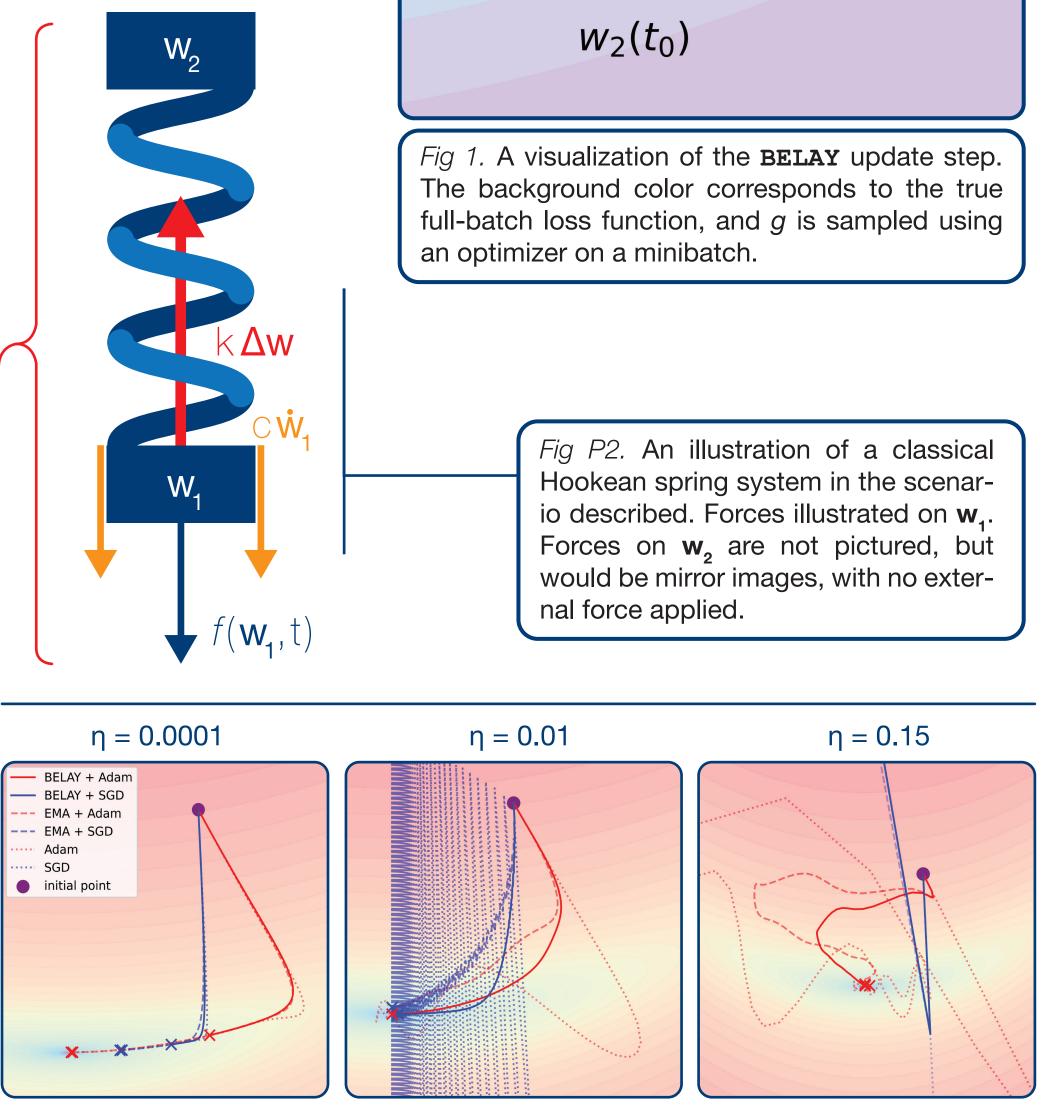
¹Applied Mathematics Program, Yale University *Equal contribution; order decided by coin toss

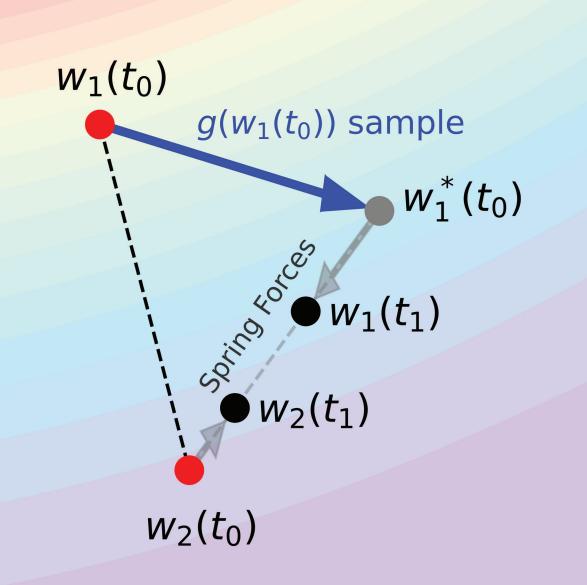
Motivations

- The exponential moving average (EMA) of neural network weights is a commonly used in deep learning optimization, especially in generative models
- EMA improves the stability of the inference model during and after training.
- Benefits *after* training have been studied
- Benefits during training not well understood.

BELAY: Physical EMA

Let w_1, w_2 represent point-particles with masses m_1, m_2 , attached by a 0-length spring with spring constant k. The particles are subject to damping with constants c_1 , c_2 respectively. External forces notated by $f(\mathbf{w}_1,t)$ are exerted upon \mathbf{w}_1 but not \mathbf{w}_2 . We break down the total forces ($\mathbf{F}_1,\mathbf{F}_2$) exerted on $\mathbf{w}_1,\mathbf{w}_2$.





$$F_{1} = \underbrace{k(w_{2} - w_{1})}{\text{Hookean}} - \underbrace{c_{1}\dot{w}_{1}}{\text{Damping}} + \underbrace{f(w_{1},t)}{\text{External}} = \underbrace{m_{1}\dot{w}_{1}}{\text{Newton's 2nd Law}}$$

$$F_{2} = k(w_{1} - w_{2}) - c_{2}\dot{w}_{2}$$

$$\dot{w}_{1} = \frac{k}{m_{1}}(w_{2} - w_{1}) - \frac{c_{1}}{m_{1}}\dot{w}_{1} + \frac{1}{m_{1}}f(w_{1},t)$$

$$\dot{w}_{2} = \frac{k}{m_{2}}(w_{1} - w_{2}) - \frac{c_{2}}{m_{2}}\dot{w}_{2}$$
Harmonic Oscillator: motion of spring system
$$Discretization with$$
Kinematics
$$w_{1}(t+1) = w_{1}(t) + \dot{w}_{1}(t) + \frac{k}{2m_{1}}(w_{2}(t) - w_{1}(t))$$

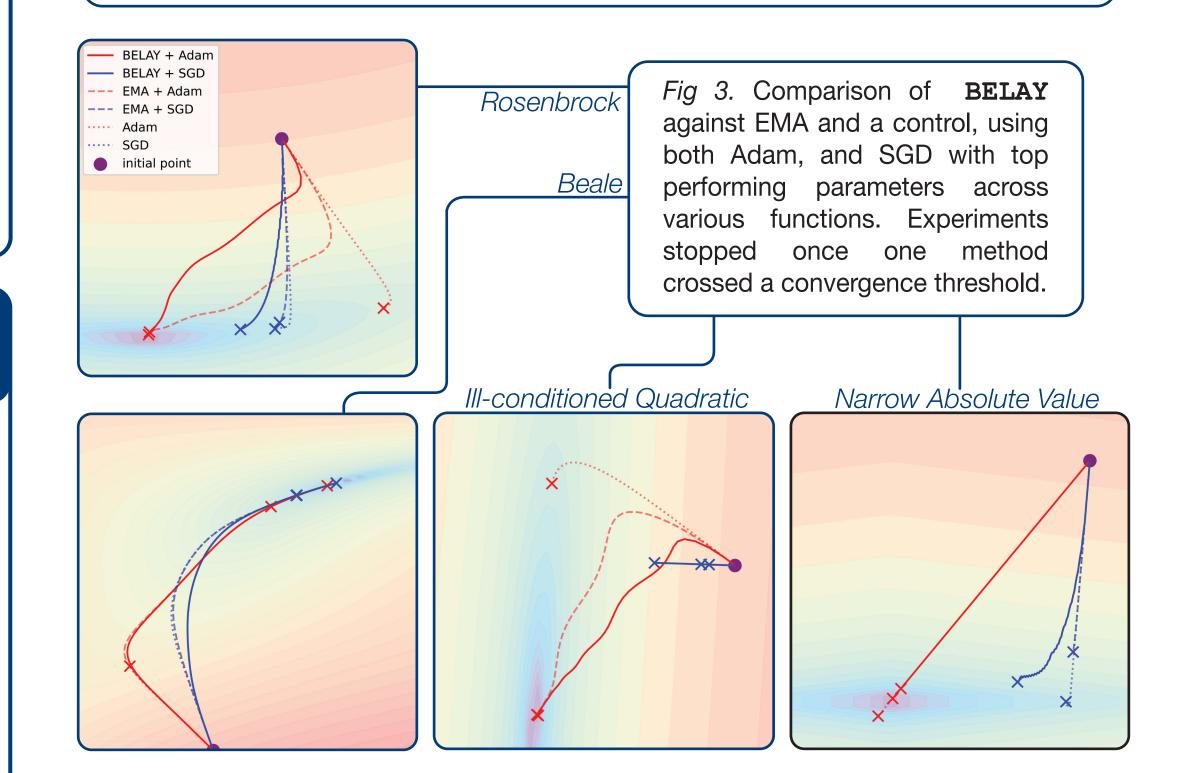
$$- \frac{c_{1}}{2m_{1}}\dot{w}_{1} + \frac{1}{2m_{1}}f(w_{1},t)$$

$$= (1 - \beta)\underbrace{w_{1}^{*}(t)}_{w_{1}(t) + \eta f(w_{1},t)} + \beta w_{2}(t) \xrightarrow{\beta \to 0}_{=} w_{1}^{*}(t)$$

$$\underbrace{w_{1}(t+1) = w_{2}(t) + \dot{w}_{2}(t) + \frac{k}{2m_{2}}(w_{1}(t) - w_{2}(t)) - \frac{c_{2}}{2m_{2}}\dot{w}_{2}$$

$$= (1 - \alpha)w_{2}(t) + \alpha w_{1}(t) \rightarrow \text{EMA}(w_{1})$$
When $c_{1} = 2m_{1}, c_{2} = 2m_{2}$, for constants α, β, η .
$$BELLAY: modified EMA as Harmonic Oscillator$$

Fig 2. Comparison of **BELAY** against EMA and a control, using both Adam, and SGD on the Rosenbrock function across learning rates. Robustness to learning rate (η) is related to robustness across varying function smoothness.



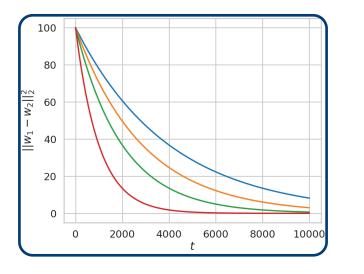
Further Insights

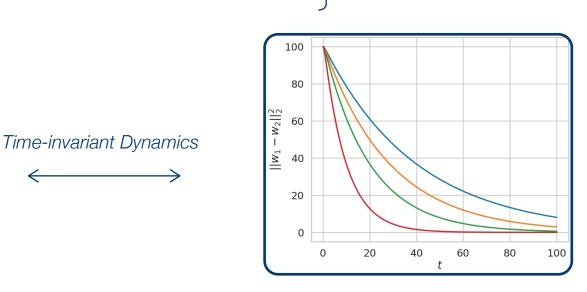
Connections to Momentum-based Methods

$$Momentum \begin{cases} \boldsymbol{v}(t) = \lambda g(\boldsymbol{w}(t)) + (1 - \lambda) \boldsymbol{v}(t - 1) = (1 - \lambda)^{s} \lambda g(\boldsymbol{w}(t - s)) \\ \mathbf{w}(t + 1) = \boldsymbol{w}(t) + \alpha \boldsymbol{v}(t) = \boldsymbol{w}(t) + \alpha \sum_{s=0}^{t} a_{s} g(\boldsymbol{w}(t - s)) \\ \downarrow \text{Linear } g \downarrow \\ = \boldsymbol{w}(t) + \alpha g\left(\sum_{s=0}^{t} a_{s} \boldsymbol{w}(t - 1)\right) = \boldsymbol{w}(t) + \alpha g(\boldsymbol{w}^{EMA}(t)) \end{cases}$$
BELAY

Physically-based Spring Parameterization

$$\boldsymbol{w}(t) = C_1 e^{\left(-\delta + \sqrt{\delta^2 - \frac{k}{m}}\right)t} + C_2 e^{\left(-\delta - \sqrt{\delta^2 - \frac{k}{m}}\right)t} \succ \text{Spring System Solution}$$





0.4

山 0.3

0.2

0.1

