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Motivations
o The exponential moving average (EMA) of neural network weights is a com-
monly used in deep learning optimization, especially in generative models

- EMA improves the stability of the inference model during and after training.

o Benefits after training have been studied
o Benefits during training not well understood.
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Fig 1. A visualization of the BELAY update step.
Let w , w, represent point-particles with masses m., m,, attached by a 0-length spring with spring con- The background color corresponds to the true
stant k. The particles are subject to damping with constants c,, c, respectively. External forces notated by full-batch | f fi dai led .
fiw_,t) are exerted upon w, but not w,. We break down the total forces (F.,F,) exerted on w_, w,,. ull- a.C. 0SS U”C_'Q”’ and g Is sampled using
an optimizer on a minibatch.
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Fig P2. An illustration of a classical
k c1 . 1 Hookean spring system in the scenar-
W1 = m_l(wZ —wi) - mq 1 T m_lf(wl’t) io described. Forces illustrated on w,.
L Co Forces on w, are not pictured, but
Wy = —('wl — wg) —  —W> would be mirror images, with no exter-
2 2 nal force applied.
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Optimizer Update Fig 2. Comparison of BELAY against EMA and a control, using both Adam, and SGD on
the Rosenbrock function across learning rates. Robustness to learning rate (n) is related
_ : 2 . to robustness across varying function smoothness.
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Connections to Momentum-based Methods
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