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ABSTRACT

Diffusion models have been firmly established as principled zero-shot solvers for
linear and nonlinear inverse problems, owing to their powerful image prior and ease
of formulation as Bayesian posterior samplers. However, many existing solvers
struggle in the noisy measurement regime, either overfitting or underfitting to the
measurement constraint, resulting in poor sample quality and inconsistent perfor-
mance across noise levels. Moreover, existing solvers rely on an approximation of
Tweedie’s formula, where an intractable conditional score is replaced by an uncon-
ditional score network, introducing a fundamental source of error in the resulting
solution. In this work, we propose a novel frequentist’s approach to diffusion-based
inverse solvers, where each diffusion step can be seen as the maximum likelihood
solution to a simple single-parameter conditional likelihood model, derived by an
adjusted application of Tweedie’s formula to the forward measurement model. We
demonstrate that this perspective is not only scalable and fast, but also allows for a
noise-aware maximization scheme with a likelihood-based stopping criterion that
promotes the proper noise-adapted fit given knowledge of the measurement noise
σy. Finally, we demonstrate comparable or improved performance against a wide
selection of contemporary inverse solvers across multiple datasets, tasks, and noise
levels.

1 INTRODUCTION

In this work, we study a broad class of problems involving the recovery of a signal x from a
measurement

y = A(x) + η. (1)
with noise η and measurement operator A. Known as inverse problems, such formulations appear
in a multitude of fields, with applications including acoustic reconstruction (Kac, 1966), seismic
profiling (Hardage, 1985), X-ray computed tomography and magnetic resonance imaging (Suetens,
2017), and a large number of computer vision reconstruction tasks such as inpainting, deconvolution,
colorization, super-resolution, and phase retrieval (Andrews and Hunt, 1977).

Generally, A is assumed to be non-invertible, meaning that any solution x satisfying A(x) = y is
not unique (Vogel, 2002). Moreover, due to noise in the measurement, it is often mathematically
possible, but not practically desirable to fit perfectly to y for risk of overfitting to η (Aster et al.,
2018). Therefore, a fundamental quandary in solving inverse problems is how one should select the
best solution from an equivalence class of solutions, i.e., choosing x∗ ∈ {x : A(x) ≈ y}.
In classical solvers, this is carried out by a regularizer on a normed error loss (Engl et al., 1996). One
seeks

x∗ = argmin
x

R(x) s.t. ||A(x)− y|| ≤ ϵ, (2)

where ϵ is a soft error margin and R is a simple function that satisfies user-specified heuristics, e.g.,
smoothness or total variation (Beck and Teboulle, 2009). However, such approaches often fail to
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produce realistic results, as R lacks the ability to reconstruct details lost byA. With the advent of deep
generative models, practitioners found that restricting solutions to the range of a generative model G
can greatly improve realism. Here, one may let x = G(w) and optimize over w, which can be latent
inputs (Bora et al., 2017) or weights (Ulyanov et al., 2018) of a deep neural network. Overall, these
methods improve the fidelity of x, but they lack interpretability and require a judiciously selected R
and ϵ.

Figure 1: An uncorrected x0 estimate
at time t versus our estimate. Diffusion-
based inverse problem solvers use an ap-
proximation of x0 to guide the diffusion
process at each step (Section 3). How-
ever, using Tweedie’s formula (Equation
4) with the score of the unconditional den-
sity p(xt) may yield a low quality ap-
proximation of x0. To remedy this, we
use the score of data-conditional density
pt(xt|x0) obtained via a noise-aware max-
imum likelihood estimation framework
(Section 4), yielding a superior estimate
of x0.

Recently, great strides have been made in solving in-
verse problems with diffusion models (Ho et al., 2020),
which produce diverse, realistic samples (Dhariwal and
Nichol, 2021; Esser et al., 2024) with robust generaliza-
tion guarantees (Kadkhodaie et al., 2023). Moreover,
they are interpretable, directly modeling the (Stein) score
∇ log pt(xt). Sampling proceeds by reversing a noising
process on x0 ∼ pdata roughly described (in black) by

xt−1 = denoise[xt,∇ log pθ(xt)] + guidance.
(3)

Solvers then add a guidance term to lead xt towards
desirable solutions. While already effective, this ap-
proach suffers from a unique problem where the explicit
form of the consistency error ||A(x) − y|| only exists
for x = x0 (Chung et al., 2022a). Such methods thus
rely (explicitly or implicitly via (Song et al., 2020a)) on
Tweedie’s formula, given a noise prediction ϵcorrected

x0[ϵcorrected] =
1
√
αt

(xt − σtϵcorrected) (4)

to estimate ||A(x)−y|| at time t, which then allows the
error to be propagated to xt.

We identify two issues with this framework in our work.
First, we discover that the guidance obtained by this
simple scheme can produce highly overfit models that
generalize poorly given noisy measurements (Figures
4 and 5). Second, examining the conditions required
for Eq. 4 to hold, we find that they are not gener-
ally true when using the unconditional score function
∇ log pt(xt) ≈ sθ(xt, t) and related quantity uncon-
ditional noise function ϵθ(xt, t), modeled in general
diffusion models (Section 3)1. On the other hand, we
observe that it does hold when modeling the data-conditional score ∇ log pt(xt|x0) and its related
ϵcorrected. This term plays a crucial role during diffusion model training as a function of the data-
dependent diffusion process centered at each x0 ∼ pdata, but is generally intractable during sampling.
Surprisingly, in inverse problems, the extra information present in y allows this term to be recovered
to great accuracy by simple maximum likelihood estimation with the measurement model.

Contributions We propose a novel frequentist’s framework for solving inverse problems by directly
sampling with a data-conditional score. We demonstrate that the maximum likelihood estimator for
this score captures all the information present in the measurement y, and propose a noise-aware
maximization scheme to recover it even under significant measurement noise where many other
algorithms fail (Figure 5). This data-conditional score can then be directly used during sampling in
lieu of the unconditional score, resulting in a simple algorithm that requires no backpropagations
through the neural function and is stable across noise levels and time steps, due to the noise-aware
maximizer and linearity of the data-conditional diffusion respectively. Finally, we demonstrate

1Note that score functions ∇ log pt(xt) ≈ sθ(xt, t) and noise predictions ϵθ(xt, t) are interchangeable via
the relation sθ = −σtϵθ .
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Figure 2: A demonstration of our proposed sampling algorithm on the super-resolution task. An
initial noise prediction ϵθ is corrected by the solution ϵy of a noise-aware maximization scheme of the
measurement likelihood p(y|xt, ϵy). This results in the corrected data-conditional noise prediction
(ϵθ + ϵy) ≈ −σ−1

t ∇ log pt(xt|x0). For details see Section 4.

significant speed-ups over existing inverse solvers, while achieving state-of-the-art performance on a
large selection of inverse problems, datasets and noise levels2.

2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELS

Inspired by non-equilibrium thermodynamics, denoising diffusion probabilistic models (Ho et al.,
2020) convert data x0 ∼ pdata(x) to noise xT ∼ N (0, I) via a diffusion process described by the
variance-preserving stochastic differential equation (VP-SDE)

dx = −β(t)

2
dt+

√
β(t)dw, (5)

where β(t) : R→ [0, 1] is a monotonically increasing noise schedule and w is the standard Wiener
process (Song et al., 2020b). This leads to the marginal distribution

pt(xt) = Ex0∼pdata

[
N (xt;

√
αtx0, (1− αt)︸ ︷︷ ︸

σ2
t

I)
]
, αt = e−

1
2

∫ t
0
β(s)ds, (6)

whereN ( · ;µ,Σ) is the probability density function (pdf) of a normal distribution centered at µ with
covariance Σ. Sampling from pdata(x) can then occur by modeling the reverse diffusion, which has a
simple form given by (Anderson, 1982)

dx =

[
−β(t)

2
− β(t)∇x log pt(xt)

]
dt+

√
β(t)dw, (7)

with reverse-time Wiener process w and score function∇x log pt(xt). Therefore, diffusion model
training consists of approximating the score function with a model

sθ(xt, t) ≈ ∇x log pt(xt), (8)
and sampling consists of obtaining solutions to the reverse-time SDE (7) with numerical solvers. The
simplest approach is given by (Ho et al., 2020)

xt−1 =
√
αt−1

xt + σ2
t∇ log pt(xt)√

αt
+ σt−1ϵ, (9)

which is inspired by the Euler-Maruyama algorithm with a uniform discretization of the diffusion
interval [0, T ].

2Code for method and experiments provided in https://anonymous.4open.science/r/
diffusion_conditional_sampling
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Figure 3: Estimated x0 given xt at different times t using
Tweedie’s formula with (a) the unconditional score versus (b)
the data-conditional score via our maximum likelihood estimator.
With the unconditional score, Tweedie’s formula tends to predict
the population mean of the dataset, rather than a sample x that
satisfies A(x) = y, especially at T ≫ 0 (Section 3).

Figure 4: Comparison of
goodness of fit for a super-
resolution task. The best fit
must balance between the mea-
surement y and the data bias
to achieve a good fit.

2.2 SOLVING INVERSE PROBLEMS WITH DIFFUSION MODELS

When solving inverse problems with diffusion models, the aim is to leverage information from y to
define a modified reverse diffusion process

xT ,xT−1, . . . ,x1,x0, (10)

such that xt coincides with the desired x (Eq. 1) precisely at t = 0. Previous approaches can generally
be sorted into two categories, which we designate posterior solvers and projection solvers.

Posterior Solvers An intuitive approach is leveraging Bayes’ rule to sample from the posterior
distribution given a prior pt(xt) and observation y:

xt ∼ p(xt|y) =
p(y|xt)p(xt)

p(y)
. (11)

Taking logs and gradients of both sides of the equation, we obtain a form of the conditional density
that can be accurately approximated with the modeled score function

∇ log p(xt|y) = ∇ log p(y|xt) +∇ log p(xt) ≈ ∇ log p(y|xt) + sθ(xt, t), (12)

and describes the core method of the DPS algorithm (Chung et al., 2022a). This strategy can also be
extended to latent diffusion models, resulting in Latent-DPS and PSLD (Rout et al., 2023). Generally,
the conditional term∇ log p(y|xt) cannot be exact due to reasons we will investigate subsequently
in Section 3, though these approximations are improved in LGD (Song et al., 2023) and STSL (Rout
et al., 2024). Much like MCG and ReSample (discussed in the next category), posterior solvers require
estimating ∂

∂xt
x0 which involves backpropagation through the diffusion model, and significantly

increases runtime and hampers scalability compared to unconditional sampling.

Projection Solvers Another approach involves guiding the reverse diffusion process by directly
projecting xt onto a manifoldM = {x : A(x) = y} ⊆ Rd at each time step, i.e.

x′
t = Px̂0[xt] (13)

xt−1 =
√
αt−1

x′
t + σ2

t∇ log p(x′
t|x̂0[xt])√

αt
+ σt−1ϵ. (14)

Where x̂0[xt] is some prediction of x0 given only xt (we elaborate in Section 3), and P is either a
projection onto the low rank subspace or range of A. The resulting algorithms are DDRM (Kawar
et al., 2022) and DDNM (Wang et al., 2022), respectively. Of course, this strategy is only correct when
two conditions simultaneously hold true: (1) the measurement operatorA is linear, and (2) the inverse
problem is noiseless, i.e, η is identically 0. These assumptions drastically limit the applicability of
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Figure 5: A demonstration of the variability in reconstruction quality across noise levels (σy ∈
{0.01, 0.1, 0.5}) of many diffusion-based solvers. While DPS approaches the robustness of our
method, it is significantly more expensive, requiring gradients of the score network and more than
3× memory cost. More examples in Appendix D.

such models. The linearity restriction can be lifted by taking derivatives the measurement discrepancy,
as in MCG (Chung et al., 2022b) and ReSample (Song et al., 2024), though this comes at the cost of
significantly increased computation, requiring ∂

∂xt
x0 which involves backpropagating through the

score network. Finally, (Cardoso et al., 2023) straddles the line between both categories — while
MCGdiff is ostensibly a Bayesian solver, it bears greater resemblance to projection solvers since
it does not form the decomposition in Eq. 12 and also samples by projecting each iterate to the
null-space of A, thus implementing a projected n-particle sequential monte carlo (SMC) sampling
algorithm.

A Maximum Likelihood Solver We take a different perspective on solving the inverse problem.
As seen in Section 3, both projection and posterior solvers must quantify the discrepancy between
xt and y via the consistency error ||A(x0)− y|| at each diffusion step. Due to the complexity of the
diffusion process, this involves approximating a fundamentally intractable quantity. In Section 4, we
construct a simpler process whose parameters can be obtained via maximum likelihood estimation.
Unlike the evidence lower bound proposed in (Mardani et al., 2023), we derive an explicit likelihood
model, which is amenable to an optimization scheme with a probabilistic noise-aware stopping
criterion. Finally, we show that the resulting algorithm is simple, fast, and adaptable to noise.

3 REVISITING TWEEDIE’S FOR INVERSE PROBLEMS

Inverse problem solvers (Section 2.2) face a fundamental computability paradox: since the consistency
error is only explicitly known at t = 0 via the likelihood function

p(y|x0) ∝ exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(15)

we cannot exactly guide the diffusion process dxt at time t > 0 without solving for x0. However,
we also cannot generally obtain x0 without first computing xt. Accurately estimating x̂0 ≈ x0 is a
fundamental problem all solvers must contend with to function properly.

In posterior solvers, this culminates in the computation of∇ log p(y|xt), which is approximated by
∇ log p(y|x̂0). In projection solvers, this is the projection step Pxt, which is driven by a projection
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Algorithm 1 Diffusion Conditional Sampler

1: Input: y,A, ϵθ | Output: x0

2: xT ∼ N (0, I)
3: for t = T to 1 do
4: ϵ ∼ N (0, I)
5: ϵy ← arg nam

ϵy

pt

(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: xt−1 ←

√
αt−1

xt−σt(ϵθ+ϵy)√
αt

+ σt−1ϵ

7: end for

Algorithm 2 Noise-aware Maximization (nam)

1: Input: y,A,xt, ϵθ | Output: ϵy
2: ϵy ← 0
3: x̂← Tweedie’s(xt, ϵθ + ϵy)
4: while 2Φ[−||y −A[x̂]||11/(dσy)] < σt do

5: ϵy ← ϵy + η∇pt
(
y|xt+σ2

t (ϵθ+ϵy)√
αt

)
6: x̂← Tweedie’s(xt, ϵθ + ϵy)

7: end while

on x̂0, followed by a DDIM step (Song et al., 2020a) that involves x̂0. In both cases, one turns to
Tweedie’s formula, which provides a simple approximation for x0 given the current xt.
Lemma 3.1 (Tweedie’s formula for diffusion models (Efron, 2011)). Let x0 be given. Suppose xt is
distributed as

pt(xt|x0) = N (xt;
√
αtx0, 1− αt︸ ︷︷ ︸

σ2
t

I). (16)

Then x0 can be recovered via

x0 =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
. (17)

A key detail in the above statement is that Tweedie’s formula requires a normally distributed pt(xt|x0),
rather than the (usually highly multi-modal) data distribution pdata modeled by a diffusion model (or
its noisy counterpart, convolved against a normal distribution with variance σ2

t ). The reliance on
this assumption becomes clear in the simple proof (reproduced in Appendix A) — observe that the
cancellations in the last equality require the linear form of the Gaussian score to hold true. In fact,
this is a necessary and sufficient condition for Tweedie’s formula to hold.
Theorem 3.2. Tweedie’s formula holds if and only if xt is distributed as a simple isotropic Gaussian.

In practice, Theorem 3.2 exposes potential sources of instability which may arise when Tweedie’s
formula is directly used without adjustment to approximate the endpoint of the reverse process. While
we may expect at t ≈ 0 that pt(xt|x0) can approach an isotropic Gaussian, at large t≫ 0 we expect
Tweedie’s to instead predict the expectation over all "nearby" data:

Ext∼pt
[x0|xt], (18)

with a neighborhood that grows to encompass all pdata itself at t ≈ T . This phenomenon is visible
in Figure 3, where at larger values of t, the fidelity of the estimated x0 is very poor, indicating less
stable sampling. The underlying reason is that this estimator of x0 cannot be a sufficient statistic for
(x0|xt,y), but rather of only (x0|xt), since y is never considered in the approximation. Therefore,
the information in y could still be leveraged for improving this approximation in the context of our
inverse problem task — and carefully in the noisy regime to prevent overfitting. This motivates the
method we outline in the following section.

4 DIFFUSION CONDITIONAL SAMPLING

We propose Diffusion Conditional Sampling (DCS), a novel framework for solving inverse problems
with diffusion models. We sample from the solution set {x : A[x] = y} of an inverse problem
by leveraging a noise-aware maximization scheme, and obtain the maximum likelihood estimator
of a simple single-parameter noisy measurement model. This measurement model is formed by
combining Eqs. 15 and 17, resulting in a closed form expression in terms of the data-conditional
score∇ log pt(xt|x0) and consistency error ||A(x)− y|| at each step:

log p(y|x0(ϵy,xt)) ∝ −
1

2σ2
y

∣∣∣∣∣∣∣∣y −A(
1
√
αt

[xt + σ2
t∇xt

log pt(xt|x0)]

)∣∣∣∣∣∣∣∣2
2

. (19)
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We note that pt(xt|x0) is a Gaussian distribution, meaning that the application of Tweedie’s formula
in Eq. 19 is exact (Theorem 3.2). Thus, defining

∇ log pt(xt|x0) = −σ−1
t [ϵθ(xt, t) + ϵy], (20)

we can solve for our single parameter ϵy by maximizing the joint likelihood between the measurement
y and our parameter ϵy. This forms our data-conditional score estimate scorrected =

−σ−1
t

[
ϵθ(xt, t) + argmax

ϵy

− 1

2σ2
y

∣∣∣∣∣∣∣∣y −A(
1
√
αt

(xt − σt[ϵθ(xt, t) + ϵy])

)∣∣∣∣∣∣∣∣2
2

]
, (21)

of the true data-conditional score∇ log pt(xt|x0). This can be interchanged with the corrected noise
prediction via the relation ϵcorrected = −σtscorrected.

Given that Eq. 21 is an ill-posed optimization problem, we seek to sample from the solution set
{x : A[x] = y} given by the measurement y through a noise-aware maximization algorithm, which
we outline below. We then leverage our learned parametric model to sample xt−1 via the standard
DDPM sampling algorithm (Ho et al., 2020). Applying this step to each t = T, . . . , 1, we arrive
at our proposed DCS algorithm. Our approach is summarized in Algorithm 1. We note that it is
remarkably simple, and easily modified from the unconditional sampler in DDPM (Ho et al., 2020).
Additional details can be found in Appendix C. Below, we discuss two critical components of our
proposed algorithm.

Noise-aware Maximization We propose a noise-aware maximization scheme (nam) to improve
stability across noise levels. As previously discussed, we seek the data-conditional score (Eq. 21),
which can be understood as the maximum likelihood solution to the measurement model (Eq. 19).

However, given a single noisy measurement y = A[x] + η, there is a high risk of overfitting to noise
η (Figures 4 and 5). To mitigate this problem, we propose a maximization scheme with a specialized
early stopping criterion based on the measurement likelihood. We leverage the intuition that the
corrected data-conditional score should yield a prediction via Eq. 17 whose residual

res = y −A[x̂0] (22)

is normally distributed with variance σ2
y. In other words, res should come from the same distribution

as η. Let this be the null hypothesis H0 — we thus seek to end the likelihood maximization process
as soon as H0 holds. Specifically, we optimize Eq. 19 until the likelihood of the alternate hypothesis
H1, that res is not distributed as η, is below a desired threshold pcritical. Since overfitting is more
problematic at the end of sampling (t ≈ 0) than the beginning of sampling (t ≈ T ), we set pcritical
dynamically as a function of t, namely pcritical(t) = σt. This scheme is heavily inspired by the
classical two-sided z-test (Hogg et al., 2013). Formally, we use the early-stopping criterion at each
time t

P (|ξ| > |res|
∣∣H0) = 2Φ(−|res|/σy) < σt, (23)

where ξ ∼ N (0, σ2
y) and Φ is the CDF of a standard normal distribution. The full noise-aware

maximization algorithm can summarized by Algorithm 2.

Sufficiency We rigorously investigate the conditions under which DCS captures all the signal
present in the measurement y. Formally, we find that scorrected (resp. ϵcorrected) is statistically sufficient
for y. Letting f(y) be the function that obtains ∇ log pt(xt|x0) via Eq. 21, we show that y is
measurable under the σ-algebra induced by the measurement f . Intuitively, we demonstrate that f(y)
contains as much information as possible about the underlying signal x0 as can be gathered via y.
The theoretical and intuitive statements can be summarized by the simple conditional equivalence

p(y|ϵθ + ϵy) = p(y|x0). (24)

We prove in Theorem A.3, that ϵy is a sufficient statistic for x0 with measurement y under mild
regularity conditions on A and η.

4.1 EFFICIENCY

We discuss the computational efficiency of our algorithm in two respects: removing the need to
compute expensive gradients of the score function, and improved convergence due to the linearity of
the data-conditional diffusion process.
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Figure 6: Qualitative comparison of our proposed method against competing works on FFHQ
256×256-1K (left) and ImageNet 256×256-1K (right). Further comparisons can be found in Ap-
pendix D.

Figure 7: A study on the effect of T on solver per-
formance. While other approaches exhibit poor
performance due to the nonlinearity of the origi-
nal reverse diffusion process, our method remains
nearly invariant to T due to the near-linearity of
the data-conditional diffusion process.

No Expensive ∇ log sθ(xt, t) Evaluations A
drawback of many existing algorithms is the
need to compute gradients of the score network
during sampling (Table 2). This is the most
expensive computation in the diffusion step, in-
creasing the runtime of the algorithm by 2-3×.
However, this is unavoidable in posterior solvers.
Projection solvers sidestep this issue by fram-
ing a diffusion process in a subspace of A —
however, this cannot be done when A is nonlin-
ear. To our knowledge, our algorithm is the only
algorithm that can handle nonlinear operators
without requiring backpropagations through the
score network. We note that the most similar
algorithm is ReSample. However, as discussed
in Appendix C.4, ReSample still requires back-
propagations in its implementation, even though this is not discussed in the paper.

A Near-Linear Reverse Process As DCS models ∇ log pt(xt|x0), it is able to sample approx-
imately from the data-conditional reverse diffusion process, which reverses the forward process
defined in Eq. 6. In the ideal scenario, this process is Gaussian, meaning that Tweedie’s is exact, and
the diffusion process can be solved in a single step. In reality, our approximation of this process is
correct up to the information about x0 present in y (Theorem A.3), under the assumptions detailed in
the previous section.

In Figure 7, we experimentally validate the robustness of our algorithm to the total diffusion steps
(T ) with the super-resolution task on a subset of the FFHQ 256× 256 dataset. We compare against
DPS and DDNM at σy = 0.05.

5 EXPERIMENTS

We examine the empirical performance of DCS across a variety of natural image based inverse
problems. We build a baseline by comparing across a range of state-of-the-art methods that operate
in the pixel space and methods which employ latent diffusion models, all detailed in Table 2.
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FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.137 30.138 19.45 0.024 34.839 21.19 0.088 25.112 19.25 0.103 28.688 22.62 0.087 29.480 26.67

DPS 0.163 25.908 33.21 0.105 29.539 29.72 0.113 23.521 24.41 0.129 26.484 26.85 0.159 24.411 29.84
Latent-DPS 0.324 20.086 100.27 0.249 22.64 297.43 0.227 22.184 211.23 0.390 25.608 321.5 0.950 -6.753 354.95
MCG 0.144 24.838 31.47 0.073 30.592 22.22 0.453 15.444 185.54 0.209 23.512 67.88 0.217 22.930 292.13
DDNM 0.208 26.277 51.33 0.040 33.076 23.35 0.209 18.118 88.32 0.235 26.086 71.47 0.424 14.221 250.92
DDRM 0.502 13.002 222.45 0.393 15.935 163.91 0.472 12.148 209.18 - - - - - -
PSLD 0.311 20.547 42.26 0.250 22.84 214.08 0.221 22.23 204.87 0.200 23.77 318.20 0.213 23.277 359.40
STSL 0.614 16.063 327.38 0.476 17.859 190.64 0.436 11.843 190.64 0.583 15.196 364.07 0.604 10.095 388.68
ReSample 0.221 24.699 48.87 0.467 22.488 96.89 0.247 20.852 50.3 0.191 27.151 46.5 0.281 25.138 65.06

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.1748 24.879 30.107 0.1490 27.536 32.800 0.1631 23.217 26.444 0.1763 25.955 26.083 0.2238 24.612 31.400

DPS 0.1847 24.786 35.455 0.1566 26.717 35.238 0.1583 22.576 32.469 0.1797 24.720 33.530 0.2107 22.412 35.086
Latent-DPS 0.3444 19.971 45.052 0.4455 18.117 109.83 0.6410 11.365 326.75 0.6398 13.762 330.93 0.6360 12.524 334.43
MCG 0.5464 20.441 102.60 0.2272 26.000 50.403 0.5791 15.297 207.23 0.4293 25.801 69.287 0.9729 -7.104 295.32
DDNM 0.6230 21.493 145.889 0.179 24.964 39.183 0.334 19.195 72.105 1.220 10.727 176.756 0.739 5.099 524.021
DDRM 0.7853 6.3273 271.70 0.6018 10.995 255.95 0.6323 9.6360 288.11 - - - - - -
PSLD 0.3481 19.251 47.864 0.3105 20.588 41.737 0.3121 19.874 40.428 0.2897 21.068 36.600 0.3307 19.224 40.374
STSL 0.3161 20.279 40.163 0.3722 19.247 54.648 0.5481 13.864 183.00 0.5137 16.411 169.32 0.5188 15.463 163.65
ReSample 0.2613 24.184 50.224 0.5267 21.575 103.62 0.2789 20.581 53.263 0.2984 23.980 56.489 0.6456 19.912 110.42

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.01 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.238 23.452 39.41 0.142 26.063 34.46 0.230 20.625 37.11 0.253 24.218 38.96 0.203 24.619 38.63
DPS 0.309 23.994 49.81 0.266 25.054 38.87 0.301 18.764 34.85 0.493 19.138 61.59 0.460 18.645 53.21
Latent-DPS 0.642 17.973 144.82 0.603 19.881 144.81 0.751 11.964 138.33 0.805 10.532 139.62 0.821 10.697 150.49
MCG 0.638 15.619 89.39 0.198 24.343 35.19 0.273 16.675 80.35 0.645 21.177 124.61 0.980 -5.726 231.11
DDNM 0.333 25.159 51.33 0.084 28.345 20.27 0.258 17.424 85.41 0.456 24.351 67.98 0.694 5.721 304.21
DDRM 0.907 6.592 277.81 0.835 10.145 215.77 0.758 11.695 198.83 - - - - - -
PSLD 0.380 22.690 168.08 0.306 24.167 125.25 0.330 18.290 156.30 0.397 23.076 134.18 0.453 21.576 187.21
STSL 0.617 19.682 143.62 0.599 20.500 137.09 0.832 9.560 170.93 0.869 8.708 183.38 0.882 8.527 195.74
ReSample 0.552 20.260 133.42 0.820 17.775 229.82 0.504 16.795 138.97 0.513 21.578 116.04 0.573 20.430 145.67

ImageNet SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

σy = 0.1 LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.4015 22.988 48.211 0.1655 26.043 34.469 0.2428 19.697 46.026 0.4068 22.283 51.131 0.4348 20.428 61.48
DPS 0.5397 18.630 85.063 0.5056 20.101 82.737 0.4789 18.033 83.059 0.4124 20.566 65.066 0.4499 18.905 75.652
Latent-DPS 0.7257 15.676 147.65 0.7973 9.4153 146.69 0.7980 9.3345 146.51 0.7988 9.3032 193.84 0.8525 9.1369 170.08
MCG 0.8858 14.008 145.06 0.4591 19.915 78.863 0.4327 15.634 123.96 0.6502 22.004 117.43 0.9836 -6.868 231.30
DDNM 0.7509 20.978 133.28 0.1693 25.634 35.718 0.4001 18.064 110.78 1.2209 9.6021 202.74 0.7825 5.0091 350.13
DDRM 0.9852 5.9810 425.77 0.9365 7.3908 358.10 0.8412 8.6456 240.95 - - - - - -
PSLD 0.4731 20.875 130.99 0.6068 19.668 145.51 0.7028 13.909 146.74 0.7372 14.181 139.90 0.7504 13.767 149.75
ReSample 0.6514 18.997 155.26 0.9654 13.612 281.82 0.5980 15.843 168.06 0.6814 19.233 173.72 1.0461 15.249 223.52

Table 1: Quantitative experiments on FFHQ 256x256-1K and ImageNet-1K datasets across various
inverse problem tasks and noise levels (σy ∈ {0.01, 0.1}).

Quantitatively, we use a set of metrics to evaluate the quality of signal recovery: Learned Perceptual
Image Patch Similarity (LPIPS), peak signal-to-noise ratio (PSNR), and Frechet Inception Distance
(FID).

We run DCS and the other methods listed in Table 2 on the FFHQ-256 (Karras et al., 2019), (Kazemi
and Sullivan, 2014), ImageNet (Deng et al., 2009), and CelebA-HQ (Liu et al., 2015) datasets. For
FFHQ and CelebA-HQ, we use the pretrained FFHQ model weights from (Chung et al., 2022a) for
pixel space models, and the pretrained FFHQ model with a VQ-F4 first stage model (Rombach et al.,
2022) in latent space models. For ImageNet, we again use pretrained model weights from (Chung
et al., 2022a) in pixel-based diffusion solvers, and the Stable Diffusion v1.5 latent model for latent
solvers.

We examine five operator inversion tasks: Super-Resolution, Gaussian Deblurring, Motion Deblurring,
Random Inpainting, and Box Inpainting. All experiments were run with additive Gaussian noise with
standard deviation σy = 0.01 (we present results at a higher noise level in Section 5.1). We also
present quantitative results on FFHQ and ImageNet in Table 1, and a qualitative comparison in Figure
6. We delegate experiments on CelebA, subsets of FFHQ used in other works, further qualitative
comparisons, and details of the implementation to Appendix B, C and D.

We find that DCS either outperforms, or is comparable to all existing methods. While some methods
have strong points and fail to recover the signal at other times, DCS is relatively consistent across
these experiments. For example, DCS is one of few methods that has reasonable results on Motion
Deblurring. DDNM, on the other hand, is very powerful across inpainting tasks in general, but fails
to perform Motion Deblurring and has underwhelming qualitative performance on many other tasks.
We note that some methods underperform in our benchmarks compared to the results in their papers’:
DDNM and PSLD due to the presence of noise in our benchmarks, and STSL and Resample for
reasons we discuss in Appendix C.
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Figure 8: Comparison of DCS per-
formance with different optimizers.
LPIPS score of the predicted x0 im-
ages is plotted against the natural
log of learning rate scaling factor
for each optimizer.

Solver Type Space No NFE
Backprop Runtime Memory

DPS (Chung et al., 2023) Posterior Pixel ✗ 6x 3.2x
Latent-DPS3 Posterior Latent ✗ 6.1x 8.9x
MCG (Chung et al., 2022b) Projection Pixel ✗ 6.1x 3.2x
DDNM (Wang et al., 2022) Projection Pixel ✓ 1.75x 1x
DDRM (Kawar et al., 2022) Projection Pixel ✓ 1.75x 1x
PSLD (Rout et al., 2023) Posterior Latent ✗ 7.5x 15x
STSL (Rout et al., 2024) Posterior Latent ✗ 1.85x 9x
ReSample (Song et al., 2024) Projection Latent ✓4 29.5x 8.95x
DCS (Ours) Hybrid Pixel ✓ 1x 1x

Table 2: Description of existing solvers used for comparison.
For each solver we list the type (as described in Section
2.2), optimization space (pixel or latent), whether it requires
backpropagation through a neural function evaluation (NFE,
i.e., the score network call), as well as runtime and memory
footprint.

We also notice that DCS provides a very significant speedup and memory footprint reduction
compared to all methods, as notated in Table 2. We achieve this by not requiring backpropagation of
the score network, as well as limiting the required number of neural function evaluations by using the
more precise form of Tweedie’s formula.

5.1 HIGHER NOISE LEVEL

We run identical benchmarks to the previous section, but at a higher noise level σy = 0.1. We display
the results for the FFHQ and ImageNet datasets in Table 1. We again see DCS achieve comparable or
superior results at every task. Projection methods such as DDNM and DDRM further deteriorate,
as they overfit and attempt to reproduce the noise. Other methods such as PSLD do not degrade as
much, however we can see from qualitative examples that they are likely underfitting in all regimes,
and therefore only gain noise-robustness by sacrificing performance at lower noise levels. Both DCS
and DPS strike a much clearer balance between overfitting and underfitting, which is apparent from
quantitative results as well as qualitative results in Figures 5 and 6.

5.2 ABLATION ON THE NOISE-AWARE MAXIMIZATION OPTIMIZER

We investigate how the choice of optimizer and parameters affects the noise-aware maximization
algorithm in DCS. We note that the flexibility of using an optimizer enables us to make use of
a frequentist stopping criterion as detailed in Section 4. In Figure 8 we run DCS with AdamW
Loshchilov et al. (2017), SGD with momentum, and vanilla SGD to solve the SRx4 task on a subset
of FFHQ. Runs of each optimizer at learning rate scaling factors are displayed to show the best
performance, ensuring a fair comparison. It is clear in Figure 8 that the addition of a momentum term
to the optimization process (both present in AdamW and SGD with momentum) can attain a higher
level of image fidelity and solver stability than vanilla SGD. This provides empirical evidence for
optimizer bias having an effect on solver performance in DCS. We see from this experiment that
AdamW produces the most consistent results across learning rates, which motivates its use in our
implementation.

6 CONCLUSION

We proposed an effective adjustment to the diffusion-based inverse problem solver framework in the
literature that improves speed and stability. Observing that the marginals of the diffusion process
which solves the inverse problem is Gaussian distributed at each time t, we derived a simple, single-
parameter likelihood model, whose sole unknown variate may be obtained via a tractable maximum
likelihood estimation algorithm. This casts a frequentist’s light on the inverse problem framework
in diffusion-based solvers, as opposed to the prevailing current of posterior and projection-based
perspectives. We leveraged this new perspective to create a noise-aware maximization scheme, and
demonstrated the effectiveness of our method via a suite of numerical experiments.

3Latent-DPS is a direct application of DPS Chung et al. (2023) to latent diffusion models. It is also mentioned
in (Rout et al., 2023).
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A ADDITIONAL THEOREMS AND PROOFS

A.1 PROOFS FOR REPRODUCTION OF TWEEDIE’S APPROXIMATION

For completeness, we demonstrate necessity by including the proof for Lemma 3.1.

Proof (of Lemma 3.1).
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
=

1
√
αt

[
xt −∇xt

σ2
t

1

2σ2
t

||xt −
√
αtx0||22

]
(25)

=
1
√
αt

[xt − (xt −
√
αtx0)] (26)

= x0. (27)

To demonstrate sufficiency, we show that the inverse of Theorem 3.1 also holds.
Lemma A.1 (A sufficient condition for Tweedie’s formula). If x0 can be recovered via Eq. 17, then
pt(xt|x0) takes the form Eq. 16.

Proof (of Lemma A.1). Suppose that

x0 =
1
√
αt

[
xt + σ2

t∇xt
log pt(xt|x0)

]
(28)

Then we may re-arrange terms, obtaining
√
αtx0 − xt

σ2
t

= ∇xt
log pt(xt|x0). (29)

Taking the anti-derivative of both sides, we conclude that

log pt(xt|x0) = σ2
t

1

2σ2
t

||xt −
√
αtx0||22 + C. (30)

Since log pt(xt|x0) can only take this form when pt(xt|x0) is a simple isotropic Gaussian distribution,
we conclude our proof.

Proof (of Theorem 3.2). Observing that Lemmas 3.1 and A.1 are converses of each other, we demon-
strate that the conditions stated in Lemma 3.1 are necessary and sufficient.

A.2 THEOREMS FOR SUFFICIENCY

We set up Theorems to show that the estimator in Eq. 21 is a sufficient statistic under different
properties of A. Letting f(y) be the function that obtains∇ log pt(xt|x0) via Eq. 21, we show that
y is measurable under the sigma algebra induced by the measurement f .

Intuitively, we demonstrate that f(y) contains as much information as possible about the underlying
signal x0 as can be gathered via y. The theoretical and intuitive statements can be summarized by
the simple conditional equivalence

p(y|ϵy∗) = p(y|x0). (31)
First, we consider two simple and theoretically similar cases: when y = A(x) is noise-free, and
when A is linear.
Theorem A.2 (ϵy∗ is a sufficient statistic). Let y = A(x0) + η be an observation from the forward
measurement model, and let

ϵy∗ = argmax
ϵy

log p

(
y

∣∣∣∣ 1
√
αt

(xt + σ2
t ϵy∗)

)
. (32)

Then
p(y|ϵy∗) = p(y|x0). (33)

given that either η = 0, or A is linear.
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We now investigate the general noisy case where A is allowed to be nonlinear. We find that our
results can still be quite general: we only need to assumeA surjective, meaning that there exists some
x ∈ domain(A) such that A(x) = y. In fact, this result is slightly stronger — we are able to show
that optimality holds for A that are compositions of linear and surjective functions.

Theorem A.3. Let ϵy∗ be as defined in Theorem A.2. Suppose the twice-differentiable operator
A := PT ◦ ϕ is composed of P : Rd → Rr, a linear projection, and ϕ : Rn → Rr, an arbitrary
surjective function. We have that

p(y|ϵy∗) = p(y|x0). (34)

To prove Theorems A.2 and A.3, we establish the following Lemma which characterizes useful
information about x∗

0.

Lemma A.4. Suppose y ∈ Rk is fixed, xt ∈ Rn, with twice differentiable linear operator A : Rn →
Rk. Then, for ϵy = ∇xt

log pt(xt|x0) which maximizes p(y|x0), the following holds true:

1. if η = 0 (i.e. the noiseless regime), A(x0) = A(xt + σ2
t ϵy

∗)

2. if A is surjective, A(x0) = A(xt + σ2
t ϵy

∗)

3. if A is linear, ⟨y −A(xt + σ2
t ϵy

∗),A(xt + σ2
t ϵy

∗)−A(x0)⟩ = 0.

An interpretation of statement 3 reads that the optimal solution ϵy
∗ for estimating x0 is orthogonal to

the error to y in the linear case. The requirements of statement 3 may be relaxed to the statement
A(x)−A(z) is in the range of the Jacobian of A at z, however this is less intuitive than linearity.
We avoid invoking linearity of A as long as possible to illustrate the fact that other transformations
may share this property as well.

Proof (of Lemma A.4). We will make use of the bijective mapping z 7→ xt + σ2
t ϵy, and charactarize

the minima which maximize log p(y|x0). We can solve the optimization problem,

argmin
z

||y −A(z)||22

A minima to this objective can be characterized by he first order necessary condition,

∇z||y −A(z)||22 = −2Jz[A](z)T (y −A(z))
= −2Jz[A](z)T (A(x0)− η −A(z)) := 0.

We can confirm it is a minima by checking the solution of the above with,

Hz

[
||y −A(z)||22

]
(z∗) = 2∇z

[
Jz[A](z)T (A(x0) + η)

]
(z∗)

= 2Jz[A](z∗)TJz[A](z∗) +
k∑

j=1

Hz[A(j)](z
∗) (y −A(z∗))

≽ 0.

If η = 0, we have that A(x0) = y, and therefore choosing any A(z∗) = A(x0) satisfies the first
order condition. The second order condition is furthermore satisfied, as y −A(z∗) = 0, meaning,

Hz

[
||y −A(z)||22

]
(z∗) = 2Jz[A](z∗)TJz[A](z∗) ≽ 0.

This satisfies statement 1. Statement 2 is satisfied similarly, by choosing the same z. Note that this
case differs, in that z = x0 is no longer necessarily a valid solution.
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Statement 3, is already satisfied in the cases whereA has rank equal to the dimension of its co-domain
(if d = n, this is equivalent to being full rank), since y −A(z∗) = 0. The more interesting case is
where A is low-rank.

To show orthogonality between y−A(z∗) andA(z∗)−A(x0) in other cases, we let η = δ+ δ⊥. We
can choose an optimal value for δ⊥ that satisfies δ∗⊥ = inf

δ⊥

{
||y −A(z∗)− δ⊥||22

}
, for the optimal

value, z∗. Due to the non-negativity and 0 preserving properties of norms, we have,

δ∗⊥ = y −A(z∗)
= A(x0) + η −A(z∗)
= A(x0) + δ∗⊥ + δ∗ −A(z∗)

=⇒ δ∗ = A(z∗)−A(x0).

At the optima of the original objective, z∗, the first order necessary condition dictates that,

Jz[A](z∗)T (y −A(z∗)) = Jz[A](z∗)T δ∗⊥ := 0.

For a linear A, the Jacobian is constant, so let Jz[A] = J. Therefore, JT δ∗⊥ = 0, meaning
δ∗⊥ ∈ N (JT ).

Simultaneously, since δ∗ = A(x) − A(z∗) = A(x − z∗) = J(x − z∗), we have δ∗ ∈ R(JT ).
Therefore do to the orthogonality of range and null spaces of matrix, ⟨δ∗⊥, δ∗⟩ = 0, completing the
proof.

We are now able to prove the theorems in the main text.

Proof of Theorem A.2. We leverage the theory of sufficient statistics to demonstrate our result.
Namely, if ϵy∗ is a sufficient statistic for y, then,

p(y|ϵy∗) = p(y|ϵy∗,x0) = p(y|x0). (35)

Therefore it suffices to demonstrate that ϵy∗ is a sufficient statistic for y.

By the Neyman-Fisher Factorization theorem, we have that a necessary and sufficient condition is if
there exists non-negative functions gθ and h such that

p(y|x0) = g(ϵy∗,x0)h(y). (36)

We observe that since η ∼ N (0, σ2
yI), our random variable y can be characterized by the density

function
p(y|x0) = N (y;µ = A(x0),Σ = σ2

yI). (37)

Therefore, letting yϵy∗
= A( 1√

αt
(xt + σ2

t ϵy∗)), we can write

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −A(x0)||22
)

(38)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

(
||y − yϵy∗

||22 + ||yϵy∗
−A(x0)||22 + 2⟨y − yϵy∗

,yϵy∗
−A(x0)⟩

))
(39)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||yϵy∗
−A(x0)||22

)
exp

(
− 1

2σ2
y

||y − yϵy∗
||22

)
, (40)
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where the third equality is due to Lemma A.4. In the case that A is surjective, or the noiseless regime,
statements 2 and 1 respectively satisfy the equality above trivially, as y = yϵy∗

. If the operator is
otherwise linear, statement 3 shows the cross term vanishes.

Therefore, we can assign

g(ϵy∗,x0) = (2πσ2
y)

−n/2 exp

(
1

2σ2
y

||yϵy∗
−A(x0)||22

)
(41)

h(y) = exp

(
1

2σ2
y

||y − yϵy∗
||22

)
. (42)

In the case where the measurement process A(x) = y is noiseless, this implies h(y) = 1.

We now modify the argument in order to relax the linearity assumption.

Proof of Theorem A.3. Let z = 1√
αt

(
xt + σ2

t ϵy
)
, and z∗ = argmin

z
{||y −A(z)||}.

Since z∗ minimizes the objective ||y −A(z)||, we also have that,

ϕ(z∗) := argmin
α

{
||y −PT (α)||

}
= argmax

α
p(y|α).

We can invoke Lemma A.4 to say

||y −PTϕ(x0)||22 = ||y −PTϕ(z∗)||22 + ||PTϕ(z∗)−PTϕ(x0)||22,

since PT is a linear operator, and ϕ(z∗) satisfies the conditions in the lemma. Therefore, we have,

p(y|x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(x0)||22
)

= (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)
.

We assign terms,

g(z∗,x0) = (2πσ2
y)

−n/2 exp

(
− 1

2σ2
y

||PTϕ(z∗)−PTϕ(x0)||22
)

(43)

h(y) = exp

(
− 1

2σ2
y

||y −PTϕ(z∗)||22
)
, (44)

(45)

and once again invoke the Neyman-Fisher Factorization theorem to show z∗ is sufficient for y. Since
ϵy∗ is a bijective mapping from z∗, we have that ϵy∗ is sufficient, and similarly to Theorem A.2 we
state, p(y|ϵy∗) = p(y|ϵy∗,x0) = p(y|x0).
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Figure 9: A demonstration of our solver, DCS, solving two inverse problems on natural images from
the CelebA-HQ dataset. Motion blur (left), and box dropout (right) are examples of forward operators
that are non-invertible. We show further results in Section 5

B ADDITIONAL EXPERIMENTS

B.1 FURTHER NOISE EXPERIMENTS

FFHQ SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
Ours 0.2287 20.362 100.94 0.2067 22.999 89.312 0.2005 21.298 40.099 0.2109 24.009 82.132 0.2301 22.306 90.403

DPS 0.2000 22.588 92.791 0.2290 22.808 90.739 0.2118 20.278 81.491 0.2268 25.020 83.686 0.2479 20.767 91.972
DDNM 0.7812 9.8324 387.43 0.8721 15.573 233.15 0.9966 12.607 287.79 1.4475 3.5686 408.85 1.3328 3.1782 393.24
ReSample 0.5704 19.948 179.35 0.6892 20.014 200.06 0.4958 17.530 160.47 0.5409 21.166 162.40 0.6380 19.875 194.69

Table 3: Quantitative experiments on FFHQ 256x256-1K at σy = 0.5.

B.2 SUBSET OF FFHQ USED IN OTHER WORKS

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring Cost

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ Time ↓ Mem. ↓
Ours 0.074 29.51 0.811 0.052 31.13 0.850 0.102 22.07 0.761 0.078 29.92 0.817 0.051 32.32 0.833 1x 1x

DPS 0.132 27.10 0.729 0.084 30.91 0.833 0.107 21.62 0.755 0.090 28.26 0.767 0.108 26.816 0.726 6x 3.2x
MCG 0.112 27.07 0.784 0.877 11.02 0.02 0.905 10.883 0.001 0.176 24.89 0.768 - - - 6.1x 3.2x

DDNM 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.642 8.682 0.165 1.75x 1x
Latent-DPS 0.324 20.086 0.473 0.249 22.64 0.570 0.227 22.184 0.595 0.209 23.512 0.600 0.217 22.930 0.582 6.1x 8.9x

PSLD 0.311 20.547 0.491 0.250 22.84 0.579 0.221 22.23 0.607 0.200 23.77 0.614 0.213 23.277 0.596 7.5x 15x
STSL 0.242 27.63 0.587 0.230 27.92 0.604 0.194 23.08 0.639 0.287 27.24 0.561 0.641 10.17 0.245 1.85x 9x

ReSample 0.090 29.024 0.791 0.053 30.99 0.844 0.156 20.71 0.778 0.113 29.19 0.784 0.197 27.65 0.706 29.5x 8.95x

Table 4: Quantitative evaluation of our method on FFHQ 256x256, following the experimental setup
of (Song et al., 2024).

C IMPLEMENTATION DETAILS

We provide implementation details of our experiments, as well as those for other experiments we
compare against.

C.1 OUR METHOD

Our proposed DCS has just two primary hyperparameters, as described in the table below. First is
the number of time steps T . This has relatively little effect on our model performance on most tasks.
However, it is occasionally helpful to increase T , especially in box inpainting, where there is zero
signal from y in the masked region. Here, higher T allows the diffusion model to obtain a better
solution in this unconditional diffusion process. Second, we have the choice of minimizer, which
is by default the Adam optimizer Kingma and Ba (2014). However, in the case of linear A, this
optimizer can be replaced by the closed form analytical solution to A(x) = y.

For nearly all experiments, we use the Adam optimizer with 50 optimization steps and a learning
rate of 1. The exceptions are the random inpainting and box inpainting tasks, where there is no
conditioning information on the masked pixels. This requires more denoising steps, as the diffusion
process is totally unconditional inside the mask, up to local correlations learned inside the score
network sθ. Here, we use the analytical solver with A† = A. Similarly, for nearly all experiments
we use T = 50 as found in Table 7, with the exception being random inpainting and box inpainting
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tasks, where we found that taking T = 1000 steps improved performance. However, there is little
increase in runtime, since the minimization step is much faster here.

Notation Definition
T The number of diffusion steps used in the sampler.

minimizer The minimizer used to solve for ϵy.

C.2 LATENT MODELS ON IMAGENET

We note that previous latent models use the pretrained weights in (Rombach et al., 2022) for
256 × 256 resolution datasets. However, there are no published weights in the GitHub repository
for unconditional ImageNet, making a fair comparison of our method against latent models more
involved. To this end, we leverage a significantly more powerful Stable Diffusion v1.5 model, with
publicly available weights on HuggingFace for our experiments. The measurements and the output
images are appropriately scaled for a fair comparison.

C.3 STSL

At the time of writing this work, we did not find publicly available code for STSL (Rout et al., 2024).
Therefore, we implement the algorithm ourselves in our codebase, and use the hyperparameters
provided in the paper.

C.4 RESAMPLE

We directly use the published code of ReSample (Song et al., 2024) with no changes in our paper.
We discuss two notable aspects of the experiments with ReSample. First, the implementation
on GitHub differs from that pseudocode discussed in the paper. Namely, the pseudocode in the
paper describes enforcing latent- and pixel-based consistency occasionally during an otherwise
unconditional sampling process.

In the code we observed that the sampling step taken is actually a DPS (Chung et al., 2022a) sam-
pling step, which includes a posterior-based guidance step that takes an expensive gradient of the
noise function. To see this, note that L255 in the resample_sampling function in ddim.py
calls a function measurement_cond_fn, which is defined at L62 in main.py and passed
into the resampling function. This function is a member of the class PosteriorSampling
defined in L53 in condition_methods.py. Inspecting this class, we note that it calls
torch.autograd.grad on the diffusion step as a function of x_prev (L33 or L39). In other
words, a gradient is computed for the measurement norm with respect to the input to the diffusion
model, i.e., a DPS step.

We closely investigated this DPS step in our experiments, ultimately concluding that it has a significant
effect on the performance of the algorithm, and that it was a more fair comparison to include this step,
rather than removing it. However, the inclusion of this sampling step has two primary effects. First, it
results in further increases the computation time of ReSample. Second it reveals that ReSample relies
significantly on a posterior-based formulation, applying additional resampling steps at each stage.

In experiments, we note that ReSample is significantly slower than other algorithms during sampling
(see Table 2). For example, sampling ∼ 1000 images with ImageNet takes more than two weeks
on an A6000 GPU. Since we run five different experimental conditions for each dataset, this was
an unacceptably long runtime for our academic resources. Therefore, we reduce the number of
diffusion steps T of ReSample in our experiments, from 500 reported in (Song et al., 2024) to 50.
However, we do provide a single experiment from the (Song et al., 2024) paper, where we reproduce
the hyperparameters and dataset (a 100 image subset of FFHQ). We note that (Song et al., 2024)
took a subset of the FFHQ dataset, where performance differed from the full 256×256-1K dataset
performance (c.f. Table 1). Since the subset was not published, we selected a dataset based where
ReSample obtained the same performance with its default parameters in (Song et al., 2024) (Table 4).
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C.5 DDRM

We used the version of DDRM which is implemented in the DDNM codebase. While DDRM may
theoretically be able to handle deblurring tasks, due to the high rank of the forward operators, the
SVD cannot be explicitly defined in memory, and no existing code-base for DDRM supplies fast and
memory-saving versions of these operators. Because of the relatively poor performance of DDRM
compared to DDNM, and the fact that DDRM can be considered a subtype of DDNM (see Appendix
of Wang et al. (2022)), we do not run on deblurring tasks.

D FURTHER QUALITATIVE COMPARISONS

We provide further qualitative examples from the FFHQ 256×256-1K and ImageNet 256×256-1K
datasets accompanying our quantitative evaluation in Table 1.
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Figure 10: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-
resolution task.
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Figure 11: Comparison against competing works on FFHQ 256×256-1K dataset with the random
inpainting task.
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Figure 12: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task.

22



Figure 13: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian
deblurring task.
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Figure 14: Comparison against competing works on FFHQ 256×256-1K dataset with the motion
deblurring task.
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Figure 15: Comparison against competing works on FFHQ 256×256-1K dataset with the 4× super-
resolution task.
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Figure 16: Comparison against competing works on ImageNet 256×256-1K dataset with the random
inpainting task.
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Figure 17: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task.
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Figure 18: Comparison against competing works on ImageNet 256×256-1K dataset with the Gaussian
deblurring task.
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Figure 19: Comparison against competing works on ImageNet 256×256-1K dataset with the motion
deblurring task.
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Figure 20: Comparison against competing works on FFHQ 256×256-1K dataset with the random
inpainting task at various noise levels.
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Figure 21: Comparison against competing works on FFHQ 256×256-1K dataset with the box
inpainting task at various noise levels.
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Figure 22: Comparison against competing works on FFHQ 256×256-1K dataset with the Gaussian
deblurring task at various noise levels.
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Figure 23: Comparison against competing works on FFHQ 256×256-1K dataset with the motion
deblurring task at various noise levels.
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