
Solving Inverse Problems via Diffusion Optimal
Control

Henry Li ∗

Department of Applied Mathematics
Yale University

New Haven, CT 06511
henry.li@yale.edu

Marcus Pereira
Bosch Center for Artificial Intelligence

Pittsburgh, PA 15213
marcus.pereira@us.bosch.com

Abstract

Existing approaches to diffusion-based inverse problem solvers frame the signal
recovery task as a probabilistic sampling episode, where the solution is drawn from
the desired posterior distribution. This framework suffers from several critical
drawbacks, including the intractability of the conditional likelihood function, strict
dependence on the score network approximation, and poor x0 prediction quality.
We demonstrate that these limitations can be sidestepped by reframing the gener-
ative process as a discrete optimal control episode. We derive a diffusion-based
optimal controller inspired by the iterative Linear Quadratic Regulator (iLQR) algo-
rithm. This framework is fully general and able to handle any differentiable forward
measurement operator, including super-resolution, inpainting, Gaussian deblurring,
nonlinear deblurring, and even highly nonlinear neural classifiers. Furthermore, we
show that the idealized posterior sampling equation can be recovered as a special
case of our algorithm. We then evaluate our method against a selection of neural
inverse problem solvers, and establish a new baseline in image reconstruction with
inverse problems.

1 Introduction

Diffusion models Song and Ermon [2019], Ho et al. [2020] have been shown to be remarkably adept
at conditional generation tasks Dhariwal and Nichol [2021], Ho and Salimans [2022], in part due to
their iterative sampling algorithm, which allows the dynamics of an uncontrolled prior score function
∇x log pt(x) to be directed towards an arbitrary posterior distribution by introducing an additive
guidance term u. When this guidance term is the conditional score ∇x log pt(y|x), the resulting
sample is provably drawn from the desired conditional distribution p(x|y) Song et al. [2020a].

A central obstacle to this framework is the general difficulty of obtaining the conditional score
function ∇x log pt(y|xt) due to its dependence on the noisy diffusion variate xt rather than just the
final sample x0 Chung et al. [2023a]. In large-scale conditional generation tasks such as class- or
text-conditional sampling the computational overhead of training a time-dependent conditional score
function from scratch is deemed acceptable, and is indeed the approach taken by Rombach et al.
[2022], Saharia et al. [2022], and many others. However, this solution is not acceptable in inverse
problems where the goal is to design a generalized solver that will work in a zero-shot capacity for an
arbitrary forward model.

This bottleneck has spawned a flurry of recent research dedicated to approximating the conditional
score ∇x log pt(y|xt) as a simple function of the noiseless likelihood log p(y|x0) Choi et al. [2021],
Chung et al. [2022], Rout et al. [2024], Chung et al. [2023a], Kawar et al. [2022], Chung et al. [2023b].

∗Work partially completed during an internship at Bosch AI.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Conceptual illustration comparing a probabilistic posterior sampler to our proposed
optimal control-based sampler. In a probabilistic sampler, the model relies on an approximation
x̃0 ≈ x0 to guide each step (left). We are able to compute x0 exactly on each step, resulting in much
higher quality gradients∇ log p(y|x̃0) and an improved trajectory update (right).

However, as we will demonstrate in this work, these approximations impose a significant cost to the
performance of the resulting algorithm.

To address these issues, we propose a novel framework built from optimal control theory where such
approximations are no longer necessary. By framing the reverse diffusion process as an optimal
control episode, we are able to detach the inverse problem solver from the strict requirements of the
conditional sampling equation given by Song et al. [2020a], while still leveraging the exceptionally
powerful prior of the unconditional diffusion process. Moreover, we find that the desired score
function directly arises as the Jacobian of the value function.

We summarize our contributions as follows:

• We present diffusion optimal control, a framework for solving inverse problems via the lens
of optimal control theory, using pretrained unconditional off-the-shelf diffusion models.

• We show that this perspective overcomes many core obstacles present in existing diffusion-
based inverse problem solvers. In particular, the idealized posterior sampling score Song
et al. [2020b] — approximated by existing methods — can be recovered exactly as a specific
case of our method.

• We showcase the advantages of our model empirically with quantitative experiments and
qualitative examples, and demonstrate state-of-the-art performance on the FFHQ 256× 256
dataset.

2 Background

Notation We use lowercase letters for denoting scalars a ∈ R, lowercase bold letters for vectors
a ∈ Rn and uppercase bold letters for matrices A ∈ Rm×n. Subscripts indicate Jacobians and
Hessians of scalar functions, e.g. lx ∈ Rn and lxx ∈ Rn×n for l(x) : Rn → R, respectively.
We overload notation for time-dependent variables, where subscripts imply dependence rather than
derivatives w.r.t. time, e.g., xt = x(t). Furthermore, V (xt) and Q(xt,ut) are scalar functions
despite being uppercase, in line with existing optimal control literature Betts [1998].

2.1 Diffusion Models

The diffusion modeling literature uses the following reverse-time Itö SDE to generate samples Song
et al. [2020b],

dxt =
[
f(xt)− g(t)2∇xt log pt(xt)

]
dt+ g(t)dwt, (1)

where xt ∈ Rn is the state vector, f : Rn → Rn and g : R→ R are drift and diffusion terms that can
take different functional forms (e.g., Variance-Preserving SDEs (VPSDEs) and Variance-Exploding

2

Figure 2: Predicted x0 used in a probabilistic framework (above) compared to ours (below) for
a general diffusion trajectory. The full forward rollout in our proposed framework allows for the
predicted x0 (and therefore ∇xt log p(y|x0)) to be efficiently computed for all t = 0, . . . , T .

SDEs (VESDEs) in Song et al. [2020b]), ∇xt
log pt(xt) is the score-function and wt ∈ Rn is a

vector of mutually independent Brownian motions. The above SDE has an associated ODE called the
probability-flow (PF) ODE given by

dxt = dxt +
[
f(xt)−

1

2
g(t)2∇xt

log pt(xt)
]
dt, (2)

with the same marginals {pt(xt)} as the SDE. All practical implementations of diffusion samplers
require a time-discretization of the PF-ODE. One such discretization is the well-known Euler-
discretization which gives,

xt−1 = xt − [f(xt)−
1

2
g(t)2∇x log pt(xt)]∆t (3)

where, ∆t is the length of the discretization interval and we have reversed the time evolution by
changing the sign of the drift. We are not restricted to only using the Euler-discretization and any
high-order discretization techniques can also be employed. More concisely, we have,

xt−1 = h(xt), where h : Rn → Rn (4)

which describes the general non-linear dynamics of the corresponding discrete-time diffusion sampler.

2.2 Posterior Sampling for Inverse Problems

Inverse problems are a general class of problems where an unknown signal is reconstructed from
observations obtained by a forward measurement process Ongie et al. [2020]. The forward process is
usually lossy, resulting in an ill-posed signal recovery task where a unique solution does not exist.
The forward model can generally be written as

y = A(x0) + η, (5)

where A : Rn → Rd is the forward operator, y ∈ Rd the measured signal, x0 ∈ Rn the unknown
signal to be recovered, and η ∼ N (0, σId) the noise (with variance σ2) in the measurement process.

Given the forward model Eq. (5) and a measurement y, sampling from the posterior distribution
pθ(x|y) can then be performed by solving the corresponding conditional Itö SDE

dx = [f(x)− g(t)2∇x log pt(x|y)]dt+ g(t)dw, (6)

where, invoking Bayes rule,

∇x log pt(x|y) = ∇x log pt(x) +∇x log pt(y|x). (7)

As with the unconditional dynamics, Eq. (6) has a corresponding ODE

dx = [f(x)− 1

2
g(t)2∇x log pt(x|y)]dt, (8)

which has an approximate solution obtained by the Euler discretization

xt−1 = xt + [f(xt)−
1

2
g(t)2∇xt

log pt(xt|y)]∆t. (9)

3

Figure 3: Inverse problem solution as a function of total diffusion timesteps T for the 4×
super-resolution task. Compared to DPS (top row), our method (bottom row) produces solutions
that are higher quality, in greater agreement with the inverse problem contraint Ax = y, and more
stable across T .

2.3 Optimal Control

Optimal control is the structured and principled approach to the guidance of dynamical systems over
time. Many methods have been developed in the optimal control literature and are popularly referred
to as trajectory optimization algorithms Betts [1998]. Perhaps the most well-known is the Iterative
Linear Quadratic Regulator (iLQR) algorithm which uses a first-order approximation of the dynamics
and second-order approximations of the value-function Li and Todorov [2004].

Formally, let us define an arbitrary user-defined global cost function

JT =

1∑
t=T

ℓt(xt, ut) + ℓ0(x0), (10)

composed of a sum over scalar-valued running and terminal cost functions ℓt and ℓ0. Optimal control
theory dictates that the value function V (xt, t) := min{un}n=1

n=t
Jt satisfies the following recursive

relation also known as Bellman’s Principle of Optimality

V (xt, t) = min
ut

[
ℓt(xt, ut) + V (xt−1, t− 1)

]
. (11)

The iLQR algorithm centers around approximating the state-action value function,
Q(xt, ut) := ℓt(xt, ut) + V (xt−1, t− 1), (12)

from which the value function can be recovered as V (xt, t) = minut
Q(xt, ut).

Then given a state transition function xt = h(xt+1,ut+1) where we crucially note that we have
defined time to flow backwards from t = T, . . . , 0, the iLQR algorithm has feedforward and feedback
gains

k = −Q−1
uuQu and K = −Q−1

uuQux (13)
The update equations can be written as

Vx = Qx −KTQuuk and Vxx = Qxx −KTQuuK. (14)
Given the feedforward and feedback gains {(Kt,kt)}Tt=0 and x̄0 := x0, we can recursively obtain
the locally optimal control at time t as a function of the present states xt and controls ut as

x̄t = h(x̄t+1,u
∗
t+1), (15)

u∗
t = ut + λk+K(x̄t − xt). (16)

For a more detailed treatment of iLQR as well as a derivation of the equations, please see Appendix
B.

3 Diffusion Optimal Control

We motivate our framework by observing that the reverse diffusion process Eq. (1) is an uncontrolled
non-linear dynamical system that evolves from some initial state (at time t = T) to some terminal
state (at time t = 0). By injecting control vectors ut into this system we can influence its behavior
and hence its terminal state (i.e., the generated data) to sample from a desired p(x|y). There are two
obvious ways to inject control into this process:

4

Algorithm 1 Diffusion Optimal Control
Input: λ, T,y,xT

Initialize ut,kt,Kt as 0 for t = 1 . . . T , {x′
t}Tt=0 as uncontrolled dynamics

for iter = 1 to num_iters do
Vx, Vxx ← ∇x0

log p(y|x0),∇2
x0

log p(y|x0) ▷ Initialize derivatives of V (xt, t)
for t = 1 to T do

Compute kt, Kt, Vx, Vxx ▷ See Eqs. (13), (14)
end for
for t = T to 1 do

xt−1 ← h(xt, λkt +Kt(xt − x′
t)) ▷ Update xt−1 with new ut

x′
t−1 ← xt−1

end for
end for

1. In input perturbation control, we apply the ut before the diffusion step:

xt−1 = (xt + ut)−
[
f(xt + ut)−

1

2
g(t)2∇x log pt(xt + ut)

]
∆t. (17)

2. In output perturbation control, ut is applied after the diffusion step:

xt−1 = xt −
[
f(xt)−

1

2
g(t)2∇x log pt(xt)

]
∆t+ ut. (18)

Observe that iLQR is formulated for general discrete-time dynamic processes. When applied
specifically to the reverse diffusion dynamics of diffusion models, we are able to make several
simplifications. First, we assume that we do not have access to any guidance except at time t = 0 —
i.e., ℓt(xt,ut) does not depend on xt.

In the case of input perturbation control, we observe from Eq. (17) that hx = hu, whereas output
perturbation control implies that hu = I, resulting in the left and right equations, respectively:

Qx = hT
xV

′
x Qx = hT

xV
′
x (19)

Qu = ℓu + hT
xV

′
x Qu = ℓu + V ′

x (20)

Qxx = hT
xV

′
xxhx Qxx = hT

xV
′
xxhx (21)

Qux = Qxu = hT
xV

′
xxhx Qux = QT

xu = V ′
xxhx (22)

Quu = ℓuu + hT
xV

′
xxhx Quu = ℓuu + V ′

xx. (23)

The derivatives of V can then be backpropagated using the following equations:

Vx = Qx −KTQuuk = Qxx −KTQuuK

= Qx +QT
uxQ

−1
uuQu (24)

Vxx = Qxx −KTQuuK

= Qxx −QT
uxQ

−1
uuQux. (25)

In high dimensional systems such as Eq. 3, matrices may be singular. Therefore, a Tikhonov
regularized variant of iLQR is often employed, where matrix inverses are regularized by a diagonal
matrix αI Tassa et al. [2014].

3.1 High Dimensional Control

Compared to the dynamics in traditional application areas of optimal control, those we consider in
Eqs. (17- 18) are much higher dimensional in the state x and control u variates. Therefore, iLQR
faces several unique computational bottlenecks when applied to such control problems.

In particular, the Jacobian matrices hx,hu and the second-order derivative matrices
Vxx, Qxx, Qux, Qxu, and Quu are particularly expensive to compute, store, and perform down-
stream operations against. For example, in a three-channel 256× 256 image, these matrices naively
contain (256× 256× 3)2 ≈ 39B parameters.

5

Figure 4: Examples from inverse problem tasks on FFHQ 256 × 256. From left to right each
column contains ground truth, measurement, Diffusion Posterior Sampling (DPS), and ours.

In Appendix D.1 we propose and analyze three modifications to the standard iLQR algorithm:
randomized low rank approximations, matrix-free evaluations, and action updates via an adaptive
optimizer, that significantly reduce runtime and memory constraints while introducing minimal
deterioration to performance on inverse problem solving tasks.

4 Improved Posterior Sampling

We demonstrate that our optimal control-based sampler overcomes several practical obstacles that
plague existing diffusion-based methods for inverse problem solvers.

Brittleness to Discretization In a probabilistic framework, solutions to inverse problems incur a
discretization error from the numerical solution of Eq. (8) that decays poorly with the total diffusion
steps T of the diffusion process. While much research has been conducted on the acceleration of
unconditional diffusion processes Song et al. [2020a], Jolicoeur-Martineau et al. [2021], Karras
et al. [2022], Meng et al. [2023], sample quality appears to decay much more aggressively in
diffusion-based inverse problem solvers (Figure 3).

We theorize that this is due to two reasons: 1) the posterior sampler Eq. (9) is only correct in the
limit of infinitely small time steps, and 2) the quality of the approximated conditional score term
∇x log p(y|xt) decays quickly with time (Figure 2), and so fewer timesteps lead to fewer chances
at low t to correct errors made at high t. On the other hand, since optimal control directly casts the
discretized process as an end-to-end control episode, it produces a feasible solution for any number
of discretization steps T .

Intractability of∇xt
log p(y|xt) When the forward modelA is known and η comes from a simple

distribution, the conditional likelihood p(y|xt) can be derived in closed form for t = 0. On the other
hand, the dependence of y on xt for t > 0 is generally not known without explicitly computing x0,
which requires sampling from the diffusion process. Ultimately, obtaining the conditional score term
∇xt

log p(y|xt) is a highly nontrivial task Song et al. [2020b].

To sidestep this issue, many works Meng and Kabashima [2022], Song et al. [2022], Chung et al.
[2023a] factorize this term as the integral

p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0 (26)

and then apply a series of approximations to recover a computationally feasible estimate of the
conditional score. First, the marginal p(x0|xt) is replaced by the marginal conditioned on x0, i.e.

6

p(x0|xt,x0) = N (x0, σ
2I) Kim and Ye [2021]. Next, the x0-centered marginal is replaced by the

posterior mean E[x0|xt] given by Tweedie’s formula Efron [2011]. Finally, the true score is replaced
by the learned score network.

While these approximations are necessary in a probabilistic framework, we show that they are not
required in our method. Intuitively, this is because the linear quadratic regulator backpropagates
the control cost log p(y|x) through a forward trajectory rollout, which naturally computes the true
conditional score at each time t. Moreover, our model always estimates x0|xt exactly (up to the
discretization error induced by solving Eq. 3), rather than forming an approximation x̂0 ≈ x0 (Figure
2). We formalize this observation with the following statement.

Theorem 4.1. Let Eq. 3 be the discretized sampling equation for the diffusion model with output
perturbation mode control (Eq. 18). Moreover, let the terminal cost

ℓ0(x0) = − log p(y|x0) (27)

be twice-differentiable and the running costs

ℓt(xt,ut) = 0. (28)

Then the iterative linear quadratic regulator with Tikhonov regularizer α produces the control

ut = α∇xt
log p(y|x0). (29)

In other words, by framing the inverse problem as an unconditional diffusion process with controls
ut, our proposed method produces controls that coincide precisely with the desired conditional scores
∇xt

log p(y|x0).

Let us further assume that log p(y|xt) = log p(y|x0), i.e., xt contains no additional information
about y than x0. This assumption results in the posterior mean approximation in Chung et al. [2023a]
under stochastic dynamics (Eq. 1), where we additionally obtain exact computation of x0, rather than
x̂0 ≈ x0 via Tweedie’s formula Kim and Ye [2021]. Under the deterministic ODE dynamics (Eq. 2),
we recover the true posterior sampler under appropriate choice of Tikhonov regularization constant
α.

Lemma 4.2. Under the deterministic sampler with output perturbation mode control, α = 1
g(t)2∆t

recovers posterior sampling (Eq. 9).

We demonstrate a similar result with input mode perturbation.

Theorem 4.3. Let Eq. 3 be the discretized sampling equation for the diffusion model with input
perturbation mode control (Eq. 17). Moreover, let

ℓ0(x0) = log p(y|x0), (30)

and the running costs
ℓt(xt,ut) = 0. (31)

Then the iterative linear quadratic regulator with Tikhonov regularizer α = 1
g(t)2∆t produces the

dynamical sytem

x̃t = x̃t + [f(x̃t)−
1

2
g(t)2(∇x log pt(x̃t)

+∇x log pt(y|xt))]∆t, (32)

where x̃t := xt + ut.

Observe that Eq. (32) can be understood as a predictor-corrector sampling method, where the
predictor produces an unconditional reverse diffusion update and the corrector produces a conditional
correction step on the intermediary variable xt = x̃t − ut.

Ultimately, these results demonstrate that our proposed method is able to recover the idealized
sampling procedure under mild assumptions on the diffusion optimal control algorithm.

7

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓
Ours (T = 50) 32.47 0.171 15.93 0.053 20.22 0.122 31.80 0.189 39.40 0.217
Ours (T = 20) 37.53 0.189 20.75 0.108 23.88 0.164 35.24 0.191 45.99 0.233

PSLD (T = 1000) 34.28 0.201 21.34 0.096 43.11 0.167 41.53 0.221 - -
Flash-Diffusion* (T = varies) - - 53.95 0.195 - - 65.35 0.280 64.57 0.267

DDNM (T = 1000) 68.94 0.328 105.3 0.802 72.28 0.483 126.0 0.995 - -
DPS (T = 1000) 39.35 0.214 33.12 0.168 21.19 0.212 44.05 0.257 39.92 0.242

DDRM (T = 1000) 62.15 0.294 42.93 0.204 69.71 0.587 74.92 0.332 - -
MCG (T = 1000) 87.64 0.520 40.11 0.309 29.26 0.286 101.2 0.340 310.5 0.702

PNP-ADMM 66.52 0.353 151.9 0.406 123.6 0.692 90.42 0.441 89.08 0.405
Score-SDE (T = 1000) 96.72 0.563 60.06 0.331 76.54 0.612 109.0 0.403 292.2 0.657

ADMM-TV 110.6 0.428 68.94 0.322 181.5 0.463 186.7 0.507 152.3 0.508

Table 1: Quantitative evaluation (FID, LPIPS) of model performance on inverse problems on the
FFHQ 256x256-1K dataset.

Dependence on the Approximate Score While our theoretical results require that the learned score
function sθ(xt, t) approximates the true data score log pt(xt, t), we emphasize that the performance
of our method does not necessitate this condition. In fact, we find that reconstruction performance
is theoretically and empirically robust to the accuracy of the approximated prior score sθ(xt, t) ≈
∇xt

log pt(xt) or conditional score∇xt
log pt(y|x0) ≈ ∇xt

log pt(y|xt) terms. This is because the
optimal control-based solution is formulated for the optimization of generalized dynamical systems,
and thus agnostic to the diffusion sampling process.

Certainly, improved approximation of the score terms result in a better-informed prior and usually
higher sample quality. However, we demonstrate that our sampler produces remarkably reasonable
solutions even in the case of randomly initialized diffusion models. Conversely, probabilistic posterior
samplers can only sample from p(y|x0) when the terms composing the posterior sampling equation
(Eq. (8)) are well approximated (Figure 6). Modeling errors can occur even in foundation models.
For example, this scenario may arise in models trained on regions where there are underrepresented
examples in the data. When these arise from existing social or ethical biases, they can further
perpetuate or amplify biases to the resulting model if left unaddressedBolukbasi et al. [2016], Birhane
et al. [2021], Srivastava et al. [2022].

There exist several methods that seek to alleviate the errors incurred by Tweedie’s formula (being a
mean approximation of the diffusion process), including Song et al. [2024] which imposes a hard
data consistency optimization loop at various points in the diffusion process, and Rout et al. [2023]
which includes a stochastic averaging loop in each step of the diffusion process. However, these
methods still rely on Tweedie’s formula for the error reduction scheme, which assumes access to
a ground truth score function. Ultimately, the aforementioned problems in the present section are
exacerbated in existing samplers, and relatively less consequential in our solver.

5 Related Work

The recent success of diffusion models in image generation Song and Ermon [2019], Ho et al. [2020],
Song et al. [2020b], Rombach et al. [2022] has spawned a surge of research in deep learning-based
solvers to inverse problems. Song et al. [2020b] demonstrated a strategy for provably sampling from
the solution set p(x|y) of a general inverse problem y = A(x) using only an unconditional prior
score model∇x log pt(x) and a forward probabilistic model log p(y|xt). However, a crucial problem
arises in the intractability of forward probabilistic model, which depends on the noisy xt rather than
the final x0. This has resulted in a series of approximation algorithms Choi et al. [2021], Kawar et al.
[2022], Chung et al. [2022, 2023a,b], Kawar et al. [2023] for the true conditional diffusion dynamics.

Topics in control theory have been applied to deep learning Liu et al. [2020], Pereira et al. [2020] as
well as diffusion modeling Berner et al. [2022]. Optimal control can also be connected to diffusion
processes via forward-backward SDEs Chen et al. [2021]. However, these ideas have not been applied
to guided conditional diffusion processes solely at inference time, nor for guided conditional sampling.
Our proposed optimal control-based algorithm is, to our knowledge, the first such framework for
deep inverse problem solvers.

8

Figure 5: Examples from the class-
conditional inverse problem. DPS (left) is
compared against ours (right). Each row is a
different target MNIST class.

Figure 6: Robustness to approximation
quality of the score function. We consider
the 4× super-resolution task with a randomly
initialized diffusion model. Since the reverse
diffusion process is no longer well approxi-
mated, DPS cannot produce a feasible solu-
tion, while our method still can.

6 Experiments

Following previous work Chung et al. [2023a], Meng and Kabashima [2022], Kawar et al. [2022], we
consider five inverse problems. 1) In 4× image super-resolution, we use the bicubic downsampling
operator. 2) In randomized inpainting, we uniformly omit 92% of all pixels (across all channels).
3) In box inpainting, we mask out a 128 × 128 block uniformly sampled from a 16 pixel margin
from each side of the image, as in Chung et al. [2022]. 4) In Gaussian deblurring, we use a kernel
of size 61 × 61 and standard deviation 3.0. In motion deblurring, we generate images according
to a library2 of point spread functions with kernel size 61 × 61 and intensity 0.5. Following the
experimental design in Chung et al. [2023a], we apply Gaussian noise with standard deviation 0.05
to all measurements of the forward model.

We compare against a generalized diffusion inverse sampler (Score-SDE) proposed in Song et al.
[2020b], Diffusion Posterior Sampling (DPS) Chung et al. [2023a], Denoising Diffusion Restoration
Models Kawar et al. [2022], Manifold Constrained Gradients (MCG) Chung et al. [2022], as well
as two recent latent diffusion-based methods Fabian et al. [2023] (Flash-Diffusion3) and Rout et al.
[2024] (PSLD). For non-diffusion baselines, we compare against Plug-and-Play Alternating Direction
Method of Multipliers (PnP-ADMM) with neural proximal maps Chan et al. [2016], Zhang et al.
[2017], and a total-variation based alternating direction method of multipliers (TV-ADMM) baseline
proposed in Chung et al. [2023a].

We validate our results on the high resolution human face dataset FFHQ 256 × 256 Karras et al.
[2019]. Several methods are model agnostic (DPS, DDRM, MCG, and thus evaluated with the same
pre-trained diffusion models. To fairly compare between all models, all methods use the model
weights from Chung et al. [2023a], which are trained on 49K FFHQ images, with 1K images left as a
held-out set for evaluation. We compare our algorithm against competing frameworks on these last
1K images. We report our results on FFHQ 256× 256 in Table 1, and demonstrate improvements
on all tasks against previous methods. Finally, we demonstrate the performance of our algorithm on
the nonlinear inverse problem of class-conditional generation. Namely, let A(x) = classifier(x)
and p(y|x) be its associated probability. We compare our method to DPS on the inverse task of
generating an MNIST digit given a label y. Compared to images generated by DPS, images from our
method exhibit more pronounced class alignment and higher overall sample quality (Figure 5).

7 Conclusion

In this paper we presented a novel perspective on tackling inverse problems with diffusion models
– framing the discretized reverse diffusion process as a discrete time optimal control episode. We
demonstrate that this framework alleviates several core problems in probabilistic solvers: its depen-
dence on the approximation quality of the underlying terms in the diffusion process, its sensitivity to
the temporal discretization scheme, its inherent inaccuracy due to the intractability of the conditional
score function. We also show that the diffusion posterior sampler can be seen as a specific case of

2https://github.com/LeviBorodenko/motionblur
3For Gaussian blur and random inpainting, Flash-Diffusion uses randomly sampled, but less severe degrada-

tion operators than our experimental setup.

9

https://github.com/LeviBorodenko/motionblur

our optimal control-based sampler. Finally, leveraging the improvements granted by our solver, we
validate the performance of our algorithm on several inverse problem tasks across several datasets,
and demonstrate highly competitive results.

References
Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based

generative modeling. arXiv preprint arXiv:2211.01364, 2022.

John T Betts. Survey of numerical methods for trajectory optimization. Journal of guidance, control,
and dynamics, 21(2):193–207, 1998.

Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahembwe. Multimodal datasets: misogyny,
pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963, 2021.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29, 2016.

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-and-play admm for image restoration:
Fixed-point convergence and applications. IEEE Transactions on Computational Imaging, 3(1):
84–98, 2016.

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schr\" odinger
bridge using forward-backward sdes theory. arXiv preprint arXiv:2110.11291, 2021.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Condi-
tioning method for denoising diffusion probabilistic models. arXiv preprint arXiv:2108.02938,
2021.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints. Advances in Neural Information Processing Systems,
35:25683–25696, 2022.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. International Conference on Learning
Representations, 2023a.

Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using data consistency
for inverse problems. arXiv preprint arXiv:2305.19809, 2023b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496):1602–1614, 2011.

Zalan Fabian, Berk Tinaz, and Mahdi Soltanolkotabi. Adapt and diffuse: Sample-adaptive recon-
struction via latent diffusion models. arXiv preprint arXiv:2309.06642, 2023.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Matthew D Houghton, Alexander B Oshin, Michael J Acheson, Evangelos A Theodorou, and Irene M
Gregory. Path planning: Differential dynamic programming and model predictive path integral
control on vtol aircraft. In AIAA SCITECH 2022 Forum, page 0624, 2022.

10

David H Jacobson. New second-order and first-order algorithms for determining optimal control: A
differential dynamic programming approach. Journal of Optimization Theory and Applications, 2:
411–440, 1968.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Bahjat Kawar, Noam Elata, Tomer Michaeli, and Michael Elad. Gsure-based diffusion model training
with corrupted data. arXiv preprint arXiv:2305.13128, 2023.

Kwanyoung Kim and Jong Chul Ye. Noise2score: tweedie’s approach to self-supervised image
denoising without clean images. Advances in Neural Information Processing Systems, 34:864–874,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dana A Knoll and David E Keyes. Jacobian-free newton–krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, 2004.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pages 222–229. SciTePress, 2004.

Guan-Horng Liu, Tianrong Chen, and Evangelos A Theodorou. Ddpnopt: Differential dynamic
programming neural optimizer. arXiv preprint arXiv:2002.08809, 2020.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14297–14306, 2023.

Xiangming Meng and Yoshiyuki Kabashima. Diffusion model based posterior sampling for noisy
linear inverse problems. arXiv preprint arXiv:2211.12343, 2022.

Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis, and
Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on
Selected Areas in Information Theory, 1(1):39–56, 2020.

Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran-
tees for neural networks via harnessing the low-rank structure of the jacobian. arXiv preprint
arXiv:1906.05392, 2019.

Marcus Pereira, Ziyi Wang, Tianrong Chen, Emily Reed, and Evangelos Theodorou. Feynman-kac
neural network architectures for stochastic control using second-order fbsde theory. In Learning
for Dynamics and Control, pages 728–738. PMLR, 2020.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684–10695, 2022.

11

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. arXiv preprint
arXiv:2312.00852, 2023.

Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
Solving linear inverse problems provably via posterior sampling with latent diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

Tomohiro Sasaki, Koki Ho, and E Glenn Lightsey. Nonlinear spacecraft formation flying using
constrained differential dynamic programming. In Proceedings of AAS/AIAA Astrodynamics
Specialist Conference, 2022.

Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse
problems with latent diffusion models via hard data consistency. arXiv preprint arXiv:2307.08123,
2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2022.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Yuval Tassa, Tom Erez, and William Smart. Receding horizon differential dynamic programming.
Advances in neural information processing systems, 20, 2007.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic programming.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 1168–1175.
IEEE, 2014.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control
Conference, 2005., pages 300–306. IEEE, 2005.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):
3142–3155, 2017.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We demonstrate our results through rigorous analysis of our algorithm and
extensive experiments on multiple inverse problem settings over several datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper discusses the runtime cost of the work, and provides an
equivalent budget analysis, where it still demonstrates competitive performance on each
benchmark.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides full proofs for all theory in the appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper discloses all hyperparameters and implementation details in the
appendix.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data, which is publicly available. The
authors will release code upon acceptance.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all details in the appendix.

7. Experiment Statistical Significance

13

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Experiments for other works do not provide error bars, therefore error bars
would not benefit the analysis in this paper.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments can be run on any GPU A4000 or later.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm to the NeurIPS Code of Ethics in every respect.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses this in the appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The results in this paper paper do not have high risk for misuse.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all creators and original owners of assets.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No research is performed with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

14

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research is performed with human subjects.

15

A Impact Statement

This paper builds on a large body of existing work and presents an improved technique for solving
generic nonlinear inverse problems, which can be seen as a generalization of guided diffusion
modeling. Controlling the diffusion process in a generative model has many societal applications,
and thus a broad range of downstream impacts. We believe that understanding the capabilities and
limitations of such models in a public forum and open community is essential for practical and
responsible integration of these technologies with society. However, the ideas presented in this work,
as well as any other work in this field, must be deployed with caution to the inherent dangers of these
technologies.

B Deriving the Iterative Linear Quadratic Regulator (iLQR)

Differential Dynamic Programming (DDP) is a very popular trajectory optimization algorithm that
has a rich history of theoretical results Jacobson [1968] as well as successful practical applications
in robotics Tassa et al. [2007, 2014], aerospace Houghton et al. [2022], Sasaki et al. [2022] and
biomechanics Todorov and Li [2005]. It falls under the class of indirect methods for trajectory
optimization, wherein Bellman’s principle of optimality defines the so-called optimal value-function
which in turn can be used to determine the optimal control. This is in contrast to so-called direct
methods which cast the problem at hand into a nonlinear constrained optimization problem.

To formulate an optimal control algorithm we first define the state transition function of a dynamical
system as

xt−1 = h(xt, ut). (33)

The next ingredient that we need for our optimal control approach is a cost function J(xt, ut) ∈ R.
This is used to define a performance criterion that iLQR can optimize with respect to the set of
controls {ut}t=1

t=T (i.e., the control trajectory going backwards from time t = T to t = 1). The
cost-function is defined as follows:

JT =

1∑
t=T

ℓt(xt, ut) + ℓ0(x0), (34)

where, ℓt and ℓ0 are scalar-valued functions which are commonly referred to as the running cost-
function and the terminal cost-function respectively.

To obtain the sequence of optimal controls, we employ the dynamic programming principle. To do
so, we first introduce the notion of the Value-function defined as follows:

V (xt, t) = min
{un}n=1

n=t

Jt = min
{un}n=1

n=t

[1∑
n=t

ℓn(xn, un) + ℓ0(x0)
]

(35)

Intuitively, the Value-function resembles the optimal cost-to-go starting from time step t and state
xt until the end of the time horizon (i.e., t = 0). Using this definition, one can easily derive the
following recursive relation also known as Bellman’s Principle of Optimality:

V (xt, t) = min
ut

[
ℓt(xt, ut) + V (xt−1, t− 1)

]
. (36)

A often useful defintion used in the derivation of the iLQR Riccati equations is that of the State-Action
Value-Function Q(xt, ut) given by,

Q(xt, ut) = ℓt(xt, ut) + V (xt−1, t− 1) (37)
Therefore, V (xt, t) = min

ut

Q(xt, ut) (38)

A sketch of the derivation of the Riccati equations is as follows: we take second-order Taylor
expansions of both Q(xt, ut) and V (xt, t) around nominal state and action trajectories of {x̄t}t=0

t=T
and {ūt}t=1

t=T respectively. Next, we substitute these into Eq.(37) and equate the first- and second-

16

order terms to yield the following relations between the derivatives of Q, ℓ and V :

Qx = ℓx + hT
xV

′
x (39)

Qu = ℓu + hT
uV

′
x (40)

Qxx = ℓxx + hT
xV

′
xxhx (41)

Qxu = ℓxu + hT
xV

′
xxhu (42)

Qux = ℓux + hT
uV

′
xxhx (43)

Quu = ℓuu + hT
uV

′
xxhu, (44)

where hxt
and hut

are the Jacobians of the dynamics function h(xt, ut), evaluated at time step t,
w.r.t the state and the control vectors respectively. For ease of notation, we have dropped the subscript
t and therefore all derivatives above should be considered to be evaluated at time step t, while we use
V ′
x and V ′

xx above to indicate the gradient and hessian of the Value-function evaluated at the next
time step (i.e., at time step t− 1).

Next, we substitute for the second-order approximation of Q(xt, ut) into Eq. (38) and note that ut

can be written in terms of the nominal control as follows:

ut = ūt + δut.

This results in a quadratic objective w.r.t δut and the minimization in Eq. (38) can be performed
exactly resulting in the following optimal perturbation from the nominal control trajectory:

δu∗
t = kt +Ktδxt (45)

where, the feedforward and feedback gains are given by the following expressions:

k = −Q−1
uuQu (46)

K = −Q−1
uuQux (47)

Finally, by substituting for the optimal δu∗
t back into Eq.(38), we can drop the min operator and

equate the first- and second-order terms on both sides. This results the following Riccati equations:

Vx = Qx −KTQuuk (48)

Vxx = Qxx −KTQuuK. (49)

This concludes the sketch derivation of the Riccati equations. The algorithm roughly proceeds as
follows:

1. We start with an initial guess of the the nominal control trajectory {ūt}1t=T and generate the
corresponding nominal state trajectory {x̄t}0t=T using xt = h(xt+1,ut+1).

2. By noticing from Eq. (35) that V (x0, 0) = ℓ(x0) we can obtain expressions for Vx and Vxx

evaluated at x̄0.
3. Next, we compute the derivatives of Q given by equations. (39)-(44) using {ūt}1t=T and
{x̄t}1t=T .

4. Using the derivatives of Q, we can compute the feedforward and feedback gains using
equations (46)-(47).

5. Finally, using the Riccati equations (48)-(49), we can propagate both Vx and Vxx one step
backwards in time.

6. We then repeat the steps 3, 4 and 5 until we backpropagate the derivatives of V to time step
t = T .

7. This completes one iteration of iLQR. At the end of each iteration the gains are used to
produce the updated nominal control trajectory as follows:

ū∗
t = ūt + αk+K(x̄t − xt) (50)

where, xt is the state obtained by unrolling the dynamics subject to the updated controls:

xt = h(xt+1, ū
∗
t+1).

8. The new nominal control trajectory ū∗
t is used to produce a new nominal state trajectory x̄∗

t
and the algorithm is repeated from step 2 onwards until convergence or a fixed number of
iterations.

17

C Proofs

Theorem 4.1. Let Eq. 3 be the discretized sampling equation for the diffusion model with output
perturbation mode control (Eq. 18). Moreover, let the terminal cost

ℓ0(x0) = − log p(y|x0) (27)
be twice-differentiable and the running costs

ℓt(xt,ut) = 0. (28)
Then the iterative linear quadratic regulator with Tikhonov regularizer α produces the control

ut = α∇xt log p(y|x0). (29)

Proof. We demonstrate the result via induction for t = 1, . . . , T .

Since we assume that ℓuu = 0, Vxx vanishes:
Vxx = Qxx −QT

uxQ
−1
uuQux (51)

= hT
xV

′
xxhx − hT

xV
′
xx(V

′
xx)

−1V ′
xxhx (52)

= 0. (53)

Similarly, Vx also greatly simplifies as

Vx = Qx +QT
uxQ

−1
uuQu (54)

= hT
xV

′
x + hT

xV
′
xx(V

′
xx)

−1V ′
x (55)

= hT
xV

′
x. (56)

Turning to the Tikhonov regularized feedforward term,
k = −Q−1

uuQu (57)

= −(hT
x Vxx︸︷︷︸

0

hx + αI)−1Qu (58)

= −(0+ αI)−1Qu (59)

= − 1

α
V ′
x. (60)

Finally, the feedback term disappears due to the vanishing Vxx

K = −Q−1
uuQux (61)

= 0. (62)

Explicitly denoting the dependence of Vx and V ′
x on t, we can rewrite Eq. 56 as

V (t)
x = hT

xV
(t−1)
x

=
∂xt−1

∂xt

∂

∂xt−1
V.

Combining this observation with the fact that ℓ0 = − log p(y|x0), we can conclude that

V (t)
x = −∇xt log p(y|x0), (63)

where x0 depends on xt via the state transition function h (Eq. 18). Therefore, we have that

k = − 1

α
V ′
x

=
1

α
∇xt

log p(y|x0)

K = 0.

Finally, given our action update (Eq. 15), we can conclude our desired result

ut =
1

α
∇xt

log p(y|x0). (64)

18

Lemma C.1. Under the deterministic sampler with output perturbation mode control, α = 1
g(t)2∆t

recovers posterior sampling (Eq. 9).

Proof. Substituting in α = 1
g(t)2∆t to Eq. 29, we observe that Eq. 18 can now be written as

xt−1 = [f(xt)−
1

2
g(t)2(∇xt

log pt(xt) +∇xt
log pt(y|x0))]∆t. (65)

Under the determinstic sampler, we can conclude that log pt(y|x0) = log pt(y|xt), since each xt

has a unique path through the sample space. Therefore, we conclude that Eq. 65 resembles the ideal
posterior sampler equation 9. We conclude our proof.

Theorem 4.3. Let Eq. 3 be the discretized sampling equation for the diffusion model with input
perturbation mode control (Eq. 17). Moreover, let

ℓ0(x0) = log p(y|x0), (30)

and the running costs
ℓt(xt,ut) = 0. (31)

Then the iterative linear quadratic regulator with Tikhonov regularizer α = 1
g(t)2∆t produces the

dynamical sytem

x̃t = x̃t + [f(x̃t)−
1

2
g(t)2(∇x log pt(x̃t)

+∇x log pt(y|xt))]∆t, (32)

where x̃t := xt + ut.

Proof. We similarly demonstrate the result via induction for t = 1, . . . , T .

Again, assuming that ℓuu = 0, Vxx vanishes:

Vxx = Qxx −QT
uxQ

−1
uuQux (66)

= Qxx −Qxx(ℓuu︸︷︷︸
=0

+Qxx)
−1Qxx (67)

= 0, (68)

whereas Vx greatly simplifies as

Vx = Qx +QT
uxQ

−1
uuQu (69)

= hT
xV

′
x. (70)

Turning to the feedforward and feedback terms, we have

k = −Q−1
uuQu (71)

= −(hT
x Vxx︸︷︷︸

0

hx + αI)−1Qu (72)

= −(0+ αI)−1Qu (73)

= − 1

α
hT
xV

′
x, (74)

and

K = −Q−1
uuQux (75)

= 0. (76)

We observe that

V (t)
x = − 1

α
hT
xV

(t−1)
x .

19

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

T 50 50 50 50 50

num_iters 50 100 100 100 100

step_size 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3

ℓ0(x0) ||A(x0)− y|| ||A(x0)− y|| ||A(x0)− y|| ||A(x0)− y|| ||A(x0)− y||
α 1e− 4 1e− 4 1e− 4 1e− 4 1e− 4

ℓt(xt,ut) α||ut|| α||ut|| α||ut|| α||ut|| α||ut||
k 1 1 1 1 1

control_mode input mode input mode input mode input mode input mode

Table 2: Hyperparameters for FFHQ experiments.

Therefore, noting that V (0)
x = log p(y|x0), we have

k = −V (t)
x

= − 1

α
(h(t)

x)TV (t−1)
x

= − 1

α
∇xt

log p(y|x0)

= − 1

α
∇xt

log p(y|x0(xt)).

Applying the feedforward terms to the diffusion sampling process, we have

xt−1 = (xt + ut) + [f(xt + ut)

− 1

2
g(t)2∇x log pt(xt + ut)]∆t.

We define the intermediary variable
x̃t = xt + ut, (77)

which has dynamics

x̃t = x̃t + [f(x̃t)−
1

2
g(t)2∇x log pt(x̃t)]∆t+ ut. (78)

We now can see that, letting α = ∆tg(t)2, we obtain

x̃t = x̃t + [f(x̃t)−
1

2
g(t)2(∇x log pt(x̃t) +∇x log pt(y|x0))]∆t.

.

D Implementation

For all experiments, we use publicly available datasets and pre-trained model weights. For the FFHQ
256× 256 experiments, we use the last 1K images of the dataset for evaluation. For MNIST, we do
not use images directly in the inverse classification task. The images were only used for training the
pretrained diffusion model.

For models, we used the pretrained weights from Chung et al. [2023a] for FFHQ 256×256 tasks, and
the Hugging Face 1aurent/mnist-28 diffusion model for MNIST experiments. No further training
is performed on any models. Further hyperparameters can be found in Table 2. For the classifier
p(y|x) in MNIST class-guided classification, we use a simple convolutional neural network with two
convolutional layers and two MLP layers, trained on the entire MNIST dataset.

D.1 High Dimensional Control

To speed up our proposed method, we leverage the following three modifications to the standard
iLQR algorithm.

20

SR ×4 Random Inpainting Box Inpainting Gaussian Deblurring Motion Deblurring

PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓
Ours (T = 50) 27.45 0.792 117.0 31.84 0.882 42.57 25.33 0.804 190.6 24.99 0.694 206.1 25.08 0.721 201.9

DPS (T = 1000) 25.67 0.852 176.2 22.47 0.873 368.2 25.23 0.851 195.0 24.25 0.811 244.4 24.92 0.859 209.4
DDRM (T = 1000) 25.36 0.835 189.3 22.24 0.869 388.2 9.19 0.319 7835 23.36 0.767 300.0 - - -
MCG (T = 1000) 20.05 0.559 642.8 19.97 0.703 654.8 21.57 0.751 453.0 6.72 0.051 13838 6.72 0.055 13838

PNP-ADMM 26.55 0.865 143.9 11.65 0.642 4447 8.41 0.325 9377 24.93 0.812 208.9 24.65 0.825 222.9
Score-SDE (T = 1000) 17.62 0.617 1124 18.51 0.678 916.4 13.52 0.437 2891 7.12 0.109 12620 6.58 0.102 14291

ADMM-TV 23.86 0.803 267.4 17.81 0.814 1076 22.03 0.784 407.5 22.37 0.801 376.8 21.36 0.758 475.4

Table 3: Quantitative evaluation (PSNR, SSIM, MSE) of performance on inverse problems on the
FFHQ 256x256-1K dataset.

SR ×4 Random Inpainting

LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓
k = 0 0.254 24.00 0.691 141.2 0.121 28.33 0.755 56.74
k = 1 0.171 27.45 0.792 117.0 0.053 31.84 0.882 42.57
k = 4 0.171 27.47 0.794 116.4 0.052 31.99 0.883 41.12
k = 16 0.170 27.43 0.799 117.5 0.050 32.12 0.891 39.90

Table 4: Ablative study on the effect of rank in the low rank and matrix-free approximations on
performance (LPIPS, PSNR, SSIM, NMSE) of our proposed model on the FFHQ 256x256-1K dataset
dataset.

Randomized Low-Rank Approximation The first and second order terms in Eqs. (19-25) are
corresponding Taylor expansions of deep neural functions. Even with the use of automatic differen-
tiation libraries, the formation of these matrices is incredibly expensive, requiring at least dim(x)
backpropagation passes (where dim(x) ≈ 39B in some experiments). To reduce the cost of com-
puting these matrices, we utilize their known low rank structure Sagun et al. [2017], Oymak et al.
[2019].

Leveraging advanced techniques in randomized numerical linear algebra, we estimate Eqs. (19-25)
using randomized SVD Halko et al. [2011]. For any matrix A ∈ Rm×n this is a four step process.
1) We sample a random matrix Ω ∼ N (0, In×k). 2) We obtain AΩ = Y ∈ Rm×k. 3) We form a
basis over the columns of Y, e.g. by taking the Q matrix in a QR factorization QR = Y. 4) We
approximate A ≈ QTQA.

Notably, we observe that when A is a Jacobian (or Hessian) matrix, it can be approximated purely
through Jacobian-vector and vector-Jacobian (Hessian-vector and vector-Hessian, resp.) products —
without ever materializing A itself. Moreover, a key result in randomized linear algebra is that this
algorithm can approximate A up to accuracy O(mnkσk+1) (Theorem 1.1 in Halko et al. [2011]).
Notably, if A has low rank structure where ∃k such that the k + 1th singular value σk+1 = 0, then
the approximation is exact.

Matrix-Free Evaluation Inspired by matrix-free techniques in numerical optimization Knoll and
Keyes [2004], we demonstrate a strategy for forming the action update (15) without materializing
the costly dim(x)× dim(x) matrices in the iLQR algorithm (19-25), which we shall denote as an

SR ×4 Random Inpainting

LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓
α = 0 - - - - - - - -
α = 1e− 7 0.173 27.49 0.794 115.9 0.050 31.80 0.879 42.96
α = 1e− 4 0.171 27.45 0.792 117.0 0.053 31.84 0.882 42.57
α = 1 0.172 27.43 0.799 117.5 0.050 31.85 0.891 42.47
α from Lemma 4.2 0.170 27.44 0.788 117.3 0.051 31.86 0.880 42.44

Table 5: Ablative study on the effect of the Tikhonov regularization coefficient α on performance
(LPIPS, PSNR, SSIM, NMSE) of our proposed model on the FFHQ 256x256-1K dataset dataset. No
results are reported for α = 0, as the algorithm encountered numerical precision errors during matrix
inversion.

21

SR ×4 Random Inpainting

LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓
T = 10 0.198 27.48 0.783 125.6 0.168 27.46 0.771 123.7
T = 20 0.1923 31.79 0.859 117.0 0.108 34.41 0.910 42.57
T = 50 0.171 27.45 0.792 90.79 0.053 31.84 0.882 40.56
T = 200 0.155 28.55 0.811 43.05 0.048 32.05 0.899 23.17

Table 6: Ablative study on the effect of T on performance (LPIPS, PSNR, SSIM, NMSE) of our
proposed model on the FFHQ 256x256-1K dataset dataset.

indexed set of matrices {Ai}. We do this by forming projections of each Ai against a corresponding
set of dim(x) × ℓ column-orthogonal matrices {Qi}, which we denote as Bi := QT

i Ai. These
matrices can then be stored at reduced cost as (Qi,Bi) pairs.

Matrix multiplications between any AiAj can then be approximated up to rank ℓ with respect to the
projected matrix, QiAi,Qi

, i.e.

AiAj ≈ QiBiQ
T
j Bj . (79)

However, to prevent materialization of the full size of any matrices, we drop the leading Qi, obtaining
a new projected-matrix pair (Qk,Bk), where Qk = Qi.

Adam Optimizer Finally, we precondition gradients via the Adam optimizer Kingma and Ba
[2014] before applying the feedback gains, rather than applying a backtracking line search Tassa et al.
[2014], resulting in the action update

ut = Pkt +Kt(xt − x′
t), (80)

where P is the preconditioning matrix produced by the Adam optimizer. This reduces the overall run-
time of the algorithm while still accounting for second-order information that respects the nonlinearity
of the optimization landscape.

D.2 Computational Complexity Analysis

Incorporating all three modifications, we can provide a realistic runtime and space complexity analysis
of our presented algorithm with respect to the rank k, the data dimension d, diffusion steps m, and
number of iLQR iterations n.

Combining both the low rank and matrix-free approximations, we obtain the updated equations for
input mode perturbation (where projection matrices are written as P to avoid overloading the Q
function notation):

Qx = hT
xV

′
x (81)

Qu = ℓu + hT
xV

′
x (82)

PQxxP
T = PQuxP

T = PQxuP
T = PhT

xV
′
xxhxP

T (83)

PQuuP
T = PℓuuP

T +PhT
xV

′
xxhxP

T . (84)

To simplify notation, each projection matrix P is the same — in reality, this need not be the case.
Note that Qx and Qu are simply of size d and therefore image-sized. For all our datasets, these each
take 0.2 MB to store and are therefore negligible, and we do not project these variables. When ℓuu is
diagonal (as it is in our case), we can obtain the projected inverse for Quu as

PQ−1
uuP

T = Pℓ−1
uuP

T +Pℓ−1
uuP

T (C−1 +PT ℓ−1
uuP)−1Pℓ−1

uuP
T where C = PhT

xV
′
xxhxP

(85)
via a direct application of the Woodbury matrix inversion formula Petersen et al. [2008], which has
cost O(k3 + kd2). Finally, we compute the projected updates Vxx,K as well as the full-precision

22

Vx,k terms via

k = −PTPQ−1
uuP

TPQu (86)

Vx = Qx −PTPKTPTPQuuP
TPk (87)

PKPT = −PQ−1
uuP

TPQuxP
T (88)

PVxxP
T = PQxxP

T −PKTPTPQuuP
TPKPT . (89)

Where applicable, we leverage vector-Jacobian products from standard automatic differentiation li-
braries (e.g. torch.func.vjp) which have runtime complexity O(1). Computing the Vx, Vxx,k,K
terms in Eqs. (46)-(49) costs O(k3 + kd2) FLOPs in terms of matrix multiplications (dominated by
the matrix inverse of k × k matrix qTQuuq). Crucially, it incurs O(k) neural function evaluations
(NFEs), which dominates the runtime of the algorithm. Since this computation is performed for each
diffusion step and iLQR iteration, the total runtime complexity of our algorithm is O(nm(k3 + kd2))
matrix multiplication FLOPs and O(nmk) NFEs, with O(mk2 + d) space complexity. In terms of
time complexity, the NFEs are the dominating cost, accounting for 97% of computation time.

D.3 Sensitivity to Hyperparameters

In Tables 4, 5, 6, we investigate the effect of the rank of the low rank approximation and matrix-free
projections, the Tikhonov regularization coefficient α, and the diffusion time T on the performance
of our method on the FFHQ 256x256 dataset. We evaluate performance on the super-resolution and
random inpainting tasks, with the same setup as in Section 6.

Low-Rank and Matrix-Free Rank From Table 4, it is clear that there is a significant performance
gain from even a rank one approximation of the first- and second-order matrices. The gains from
subsequent increases in the rank approximation diminish quickly. This is because increasing the rank
of the approximation only improves the approximation of the second-order terms. The first order
Vx, Qx, Qu terms are always modeled exactly in O(1) time per iteration due to their amenability to
vector-Jacobian products. From Theorems 4.1-4.3 we see that even when the second order terms are
zero (i.e., the result of assumption ℓt = 0), we exactly recover the true posterior sampler. Therefore,
the second-order terms are less important, though still useful for imposing a quadratic trust-region
regularization to the algorithm. Therefore, we ultimately choose k = 1 for three reasons:

1. the rank only affects the quadratic approximation of the iLQR algorithm (and does not affect
our theoretical results in Theorems 4.1-4.3)

2. k = 1 already allows second-order propagation of the quadratic trust-region regularization,
and

3. subsequent increases in k have a minimal effect on the performance of the algorithm.

Tikhonov Regularizer Table 5 demonstrates that our algorithm is relatively robust to the Tikhonov
regularization parameter, except when α = 0. Under this condition, any ill-conditioning of Quu

results in division by zero errors, resulting in the failure of the algorithm. Therefore, we simply
choose to let α = 1e− 4, since the effect of Tikhonov regularizer is minimal.

Diffusion Steps Finally, we observe in Table 6 that increasing the diffusion time results in higher
quality samples — though at the cost of increased computation time. Therefore, choice of T requires
balancing computational cost and sample quality, and is ultimately highly user-dependent. When the
computational and latency budget is relatively high, large T can be used to improve sample quality.
Conversely, when this budget is low, we find that even T = 20 provides reasonable samples.

23

	Introduction
	Background
	Diffusion Models
	Posterior Sampling for Inverse Problems
	Optimal Control

	Diffusion Optimal Control
	High Dimensional Control

	Improved Posterior Sampling
	Related Work
	Experiments
	Conclusion
	Impact Statement
	Deriving the Iterative Linear Quadratic Regulator (iLQR)
	Proofs
	Implementation
	High Dimensional Control
	Computational Complexity Analysis
	Sensitivity to Hyperparameters

