
Non-Normal Diffusion Models

Henry Li 1

Abstract
Diffusion models generate samples by incremen-
tally reversing a process that turns data into noise.
We show that when the step size goes to zero, the
reversed process is invariant to the distribution
of these increments. This reveals a previously
unconsidered parameter in the design of diffu-
sion models: the distribution of the diffusion step
∆xk := xk − xk+1. This parameter is implic-
itly set by default to be normally distributed in
most diffusion models. By lifting this assump-
tion, we generalize the framework for designing
diffusion models and establish an expanded class
of diffusion processes with greater flexibility in
the choice of loss function used during training.
We demonstrate the effectiveness of these models
on density estimation and generative modeling
tasks on standard image datasets, and show that
different choices of the distribution of ∆xk result
in qualitatively different generated samples.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020b; Vahdat & Kautz, 2020; Dhariwal
& Nichol, 2021) have quickly established themselves as
one of the most powerful classes of generative models in
an already crowded and competitive space — one which
also includes GANs (Goodfellow et al., 2020; Brock et al.,
2018; Karras et al., 2019), VAEs (Kingma & Welling, 2013;
Vahdat & Kautz, 2020; Child, 2020), flows (Dinh et al.,
2014; Kingma & Dhariwal, 2018; Dinh et al., 2016), and
autoregressive models (Salimans et al., 2017; Oord et al.,
2016; Child et al., 2019), among others.

A standard assumption for diffusion models is that ∆xk
:=

xk − xk+1 are normally distributed (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020b; Ho et al., 2022).
However, there are many known cases in physical and bi-
ological systems where the random incremental behavior
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of particles colliding in a space does not follow the stan-
dard Gaussian distribution (Hidalgo-Soria & Barkai, 2020;
Cugliandolo, 2002). These examples are also called anoma-
lous diffusions (Gefen et al., 1983; Bouchaud & Georges,
1990). In this work, we consider such a scenario, and pro-
pose a generalized framework for modeling diffusion mod-
els with minimal assumptions on the distribution of the ∆xk

.
To develop this framework, we prove a novel result on the
convergence of non-time homogeneous random walks to
stochastic processes in the limit of small time steps. Finally,
we demonstrate that our framework allows for greater free-
dom in the design of the model and its training dynamics,
while retaining competitive generative modeling capabilities
in terms of both model likelihood and sample quality.

2. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020b) take the form pθ(x) =∫
pθ(x0:T ) dx1:T where data x0 := x are related to a set of

latent variables x1:T := (x(t1), . . . ,x(tT )) distributed as
marginals of a diffusion process governed by an Itô stochas-
tic differential equation (SDE)

dx = f(x, t) dt+ g(t) dw (1)

with respect to time points {tk}Tk=1. f and g are typically
called drift and diffusion functions, and w is the standard
Wiener process. Samples can then be generated by modeling
the reverse diffusion, which has a simple form given by
(Anderson, 1982)

dx = [f(x, t)− g(t)2 ∇x log p(x, t)︸ ︷︷ ︸
≈sθ(x,t)

] dt+ g(t) dw, (2)

where w is a reverse-time Wiener process. Note that Eq.
(2) is itself an Itô SDE of the form Eq. (1). Training the
diffusion model involves approximating the true score func-
tion ∇x log p(x, t) with a neural network sθ(x, t) in Eq. (2).
This can be achieved directly via score matching (Hyvärinen
& Dayan, 2005; Song & Ermon, 2019; Song et al., 2020b),
or by modeling the sampling process (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Kingma et al., 2021), which is ob-
tained by discretizing the reverse-time SDE into a Markov
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chain with joint likelihood

pθ(x0:T ) = p(xT )

T−1∏
k=0

νθ(xk|xk+1) (3)

or equivalently

pθ(x0:T ) = p(xT )

T−1∏
k=0

ρθ(∆xk
|xk+1), (4)

where νθ, ρθ are Markov models and ∆xk
:= xk+1 − xk.

While most works e.g. (Song et al., 2020b; Ho et al., 2020;
Kingma et al., 2021) model Eq. (3), we shall turn our atten-
tion to the equivalent formulation Eq. (4), which focuses on
the increments, rather than the marginals of the diffusion.
Letting q be the density of the Gaussian process Eq. 2, Eqs.
(3) and (4) result in the same likelihood bound

log pθ(x) ≥ Eq

[
log p(x0|x1)︸ ︷︷ ︸

L0

−
T∑

k=1

KL(q(∆xk
|xk+1)||pθ(∆xk

|xk+1))︸ ︷︷ ︸
Lk

−KL(q(xT )||p(xT ))︸ ︷︷ ︸
LT

]
(5)

that reduces to a simple function of sθ(x, t).

When forming approximations such as Eq. (4), it is impor-
tant to consider the conditions under which they converge
to Eq. (2). While this convergence is known for normally
distributed ∆xk

(Sohl-Dickstein et al., 2015; Song et al.,
2020b; Särkkä & Solin, 2019), we shall extend this result to
arbitrarily distributed ∆xk

in Section 3.

Ultimately, either choice of learning sθ(x, t) allows for un-
biased estimates of log pθ(x) by modeling the probability
flow ODE (PF-ODE) corresponding to Eq. (2), which can be
derived via the Fokker-Planck equation (Song et al., 2020b)

dx =

[
f(x, t)− 1

2
g(t)2∇x log p(x, t)

]
dt, (6)

and substituting the score with sθ(x, t).

3. Convergence of Non-Normal Random
Walks to Diffusion Processes

A fundamental challenge in diffusion modeling is forming
tractable approximations to Eq. (1). Our result is inspired by
Donsker’s classic Invariance Principle (Billingsley, 2013),
which gives the functional convergence of an unbiased ran-
dom walk to a standard Brownian motion. We now consider
a time-inhomogeneous, biased random walk xk. Let x(t)

be the solution to Eq. (1). Intuitively, one might expect a
similar convergence of xk to x(t) if we constrain the first
and second moments of its increments ∆xk

:= xk+1 − xk

to be

E[∆xk
|xk] = f(xk, tk)∆tk

Var(∆xk
|xk) = g(tk)

2∆tk

. (7)

This type of convergence has been previously explored
for normally distributed ∆xk

in diffusion modeling (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b),
and is well known in general SDE literature (Särkkä &
Solin, 2019; Øksendal & Øksendal, 2003; Kloeden &
Platen, 1992). More generalized results also exist for
time-homogeneous or equilibrium state processes (Ethier &
Kurtz, 2009; Vidov & Romanovsky, 2009; Stroock, 2013).
However, there does not exist to our knowledge a con-
vergence result for the case of general ∆xk

in our non-
equilibrium case (Sohl-Dickstein et al., 2015). Here we
shall provide such a result, and show that convergence oc-
curs with surprisingly few assumptions. This inspires a
generalized framework for designing diffusion probabilistic
models where the distribution of ∆xk

is left as a tunable
free parameter. We leverage this framework in Section 4 to
define a generalized class of diffusion probabilistic models.

3.1. Structured Random Walks

Let xk be a random walk. We introduce the following notion
of structure, which allows us to characterize a random walk
entirely in terms of the drift and diffusion functions f and g,
the time step ∆tk , and a sequence of independent variables
zk.
Definition 1 (Structured Random Walks). We say that a
random walk xk is structured (with respect to an Itô SDE)
when its increments ∆xk

:= xk+1 −xk support the decom-
position

∆xk
= f(xk, tk)∆tk + g(tk)

√
∆tkzk, (8)

where E[zk] = 0, Var(zk) = 1, ∆tk := tk+1 − tk, and f , g
correspond to the drift and diffusion terms of the respective
Itô SDE.

The structural property in Definition 1 is quite natural. In
fact, it is how diffusion steps are usually computed, e.g., via
the reparameterization trick (Kingma & Welling, 2013; Ho
et al., 2020) or SDE solvers such as the Euler-Maruyama
method (Song et al., 2020b). Moreover, it satisfies Eq. (7).
If we additionally assume that f(x, t) is linear in x, as is the
case with the forward diffusion process in standard diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020b; Kingma et al., 2021), we have the following
closed form representations of its first and second moments
at all k ∈ {0, . . . , T}.
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p q KL(p(x)||q(x)) Lk (note: **)

N (µ1, σ
2) N (µ2, σ

2) 1
2σ2 ||µ1 − µ2||2 E

[
wk||rk||2

]
Laplace(µ1, σ

2) Laplace(µ2, σ
2) exp

(
− |µ2−µ1|

σ

)
+ |µ2−µ1|

σ + 1 E
[
exp(−vk||rk||1)− 1 + vk||rk||1

]
Uniform[µ1 −

√
3σ,µ1 +

√
3σ] N (µ2, σ

2) 1
2

(
1
σ2 (µ1 − µ2)

2 + log π
6 + 1

)
wkEϵ||rk||2 + 1

2 (1 + log
√

π
6 )

Uniform[µ1 −
√
3σ,µ1 +

√
3σ] Laplace(µ2, σ

2)

{
1

2σ2 (µ1 − µ2)
2 + 1

2 µ2 ∈ A∗

1
σ |µ1 − µ2| µ2 /∈ A

{
wkE||rk||22 + 1

2 if ϵθ(x, t) ∈ A

vkE||rk||1 if ϵθ(x, t) /∈ A

Table 1. Summary of the diffusion models proposed in Section 4. *A = [µ1 − b1, µ1 + b1]. **rk := ϵ− ϵθ(xk, tk).

Theorem 3.1 (Moments of Structured Random Walks). Let
xk be a structured random walk and f(x, tk) = β(tk)x be
linear. Then

µ(tk) := E[xk] = ᾱkx0 and σ(tk)
2 := Var(xk) = γ̄k,

where ᾱk =
∏k

i=1 (1 + βi) and γ̄k =
∑k

i=1

(
ᾱk

ᾱi+1
gi

)2
.

For notational convenience, we let βi := β(ti)∆tk and
gi := g(ti)

√
∆tk .

In diffusion modeling, we are not just interested in comput-
ing the moments of xk — we would like to sample from
p(xk)

1. This is a difficult task for generally distributed ∆xk
,

since the distribution of xk = x0 +
∑k

i=1 ∆xi
is usually

intractable. To sidestep this issue, many works assume that
∆xk

are normally distributed; since Gaussian random vari-
ables are closed under summation and specified by their
first and second moments, we see below that Lemma 3.1 is
sufficient for identifying the distribution of xk.
Corollary 3.1. Let xk be a structured random walk, zk be
normally distributed, and f(x, t) = β(t)x where β(t) is
one of the noise schedules defined in (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Kingma et al., 2021). Then we recover
their respective forward processes.

3.2. An Invariance Principle

Lifting the assumption of normally distributed increments
∆xk

, we show that we still ultimately obtain a Gaussian pro-
cess in the limit as ∆tk → 0. Much like the aforementioned
Donsker’s theorem, this also gives rise to an invariance — in
the distribution of ∆xk

. We once again leverage the notion
of structured random walks to present a general theorem for
the convergence of Markov chains with increments of the
form Eq. (8).
Theorem 3.2 (Structured Invariance Principle). Suppose
regularity conditions (B.3) hold and {xk}nk=1 is a structured
random walk on Rd. Let xT (t) = x0 +

∑nt

k=1 ∆xk
be the

continuous-time càdlàg extension of xk, where nt = ⌊t∗T ⌋.
Then xT converges in distribution to x, the solution to the
Itô SDE (Eq. 1), as ∆tk → 0.

1Where p = q or p = pθ .

Theorem 3.3 (Structured Invariance Principle). Suppose
regularity conditions hold and {xk}nk=1 is a structured ran-
dom walk on Rd. Let xT (t) = x0 +

∑nt

k=1 ∆xk
be the

continuous-time càdlàg extension of xk, where nt = ⌊t∗T ⌋.
Then xT converges in distribution to x(t), as ∆tk → 0.

Theorem 3.3 outlines the existence of a much larger class of
increments ∆xk

that converge to our desired limiting distri-
bution x(t). The convergence to x(t) unlocks many of the
essential properties for the tractability of diffusion models
which we take for granted in Gaussian increments, such as
fast sampling from the forward process and a closed form
Eq. (5), without the need to assume Gaussian increments.
Finally, we verify that we can recover Donsker’s theorem
when we let f = 0 and g = 1.

4. Non-Normal Diffusion Models
Leveraging the framework established in Section 3, we in-
troduce an expanded class of probabilistic diffusion models,
centered around alternative distributional assumptions for
q(∆xk

|xk+1) and pθ(∆xk
|xk+1). While the space of vi-

able diffusion models allowed by Theorem 3.3 effectively
contains all distributions of ∆xk

with finite mean and vari-
ance, we restrict our study to the following examples and
leave further exploration to future work. Detailed deriva-
tions can be found in Appendix A.4. A summary of all
models can be found in Table 1.

4.1. Gaussian q and pθ

First, we recover the default diffusion model loss term Lk

(from Eq. 5) by making the standard assumption that ∆xk

are normally distributed. Since the space of Gaussian-
distributed random variables is closed under affine oper-
ations, we trivially obtain the convergence of the random
walk (Eq. 4) to a Gaussian process. Using the closed form
mean and variance terms of a linear ODE (Särkkä & Solin,
2019), we obtain

Lk = wkEϵ||ϵ− ϵθ(xk, tk)||2, (9)

where wk = g(tk)
2

2σ(tk)2
∆tk and ϵθ(xk, tk) = σ(tk)sθ(xk, tk).

Plugging Eq. 9 into the likelihood bound Eq. 5, we see that
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maximizing the likelihood of a standard diffusion model
with Gaussian increments minimizes a quadratic error term
between the score function sθ(xk, tk) =

1
σ(tk)

ϵθ(xk, tk).

4.2. Laplace q and pθ

We now consider the case of Laplace distributed ∆xk
. In-

voking Theorem 3.3, we can derive the alternative loss

Lk = Eϵ

[
exp(−vk||ϵ− ϵθ(xk, tk)||1)− 1

+ vk||ϵ− ϵθ(xk, tk)||1
]
,

(10)

where vk :=
√
wk.

While the term in the expectation d(ϵ − ϵθ(xk, tk)) :=
exp (−vk||ϵ− ϵθ(xk, tk)||1) − 1 + vk||ϵ − ϵθ(xk, tk)||1
appears somewhat opaque, we can see that it converges
to a weighted L1 norm of the error rk := ϵ − ϵθ(xk, tk)
under two conditions:

lim
tk→0

vk||ϵ− ϵθ(xk, tk)||1
d(ϵ− ϵθ(xk, tk))

= 1, (11)

i.e., when t is small, and

lim
||rk||1→∞

vk||ϵ− ϵθ(xk, tk)||1
d(ϵ− ϵθ(xk, tk))

= 1 (12)

i.e., when ||rk|| is large.

4.3. Uniform q, Gaussian pθ

Next, we note that q and pθ need not be the same family of
distributions to apply our framework. To illustrate this, we
let q be uniformly distributed on the interval [µ1−

√
3σ, µ2+√

3σ, and p be Gaussian distributed. This results in the
familiar form

Lk = wkEϵ||ϵ− ϵθ(xk, tk)||2 + C, (13)

where C = 1
2

(
1 + log π

6

)
≈ 0.34 may be seen as an addi-

tional distributional mismatch penalty incurred by the joint
combination of the uniform and normal distributions. We
note, however, that such a penalty does not always arise
when pθ and q are not from the same family of distributions.

4.4. Uniform q, Laplace pθ

Finally, we demonstrate that the phase transition in Sec-
tion 4.2 to an L1-based loss is made explicit in the case
where q is uniform and pθ is the Laplace distribution. This
configuration of distributions produces the piecewise loss

Lk =

{
wkEϵ||ϵ− ϵθ(xk, tk)||22 + 1

2 if ϵθ(x, t) ∈ A

vkEϵ||ϵ− ϵθ(xk, tk)||1 if ϵθ(x, t) /∈ A
,

(14)
where A = [µ1 −

√
3σwk, µ1 +

√
3σwk]. Now, it is clear

that Lk acts as a linear function in two cases. First, when

q pθ BPD FID

Gaussian Gaussian 2.49 1.98
Laplace Laplace 2.47 2.44
Uniform Gaussian 2.82 1.99
Uniform Laplace 2.66 2.39

Table 2. Comparison between the proposed diffusion models on the
CIFAR10 dataset. We evaluate in terms of negative log-likelihood
(BPD, lower is better) and sample quality (FID, lower is better).
BPD and FID are computed with different architectures.

Figure 1. Images generated from the same seed via (in order from
top to bottom) Gaussian-Gaussian, Laplace-Laplace, Uniform-
Gaussian, and Uniform-Laplace diffusion increments. While the
qualitative difference is somewhat subtle, Laplace diffusion ap-
pears to be biased towards smoother images with more saturated
colors.

tk → 0, as A becomes a vanishingly small set. And sec-
ond, when rk := ϵ − ϵθ(xk, tk) is large. Both imply that
ϵθ(x, t) /∈ A.

5. Experiments
For illustrative purposes, we evaluate the diffusion models
proposed in Section 4 on the CIFAR10 (Krizhevsky et al.,
2009) and down-sampled ImageNet (Van Den Oord et al.,
2016) datasets. We quantify the performance of our models
with the negative log-likelihood in terms of bits per dimen-
sion (BPD) and the Frechet Inception Distance (Heusel et al.,
2017). Results are displayed in Table 2. We show that our
model obtains competitive results in terms of both metrics.

More interestingly, some of the losses proposed in Sec-
tion 4 result in generated samples with distinctly different
visual characteristics. For example, images generated by
the Laplace-based diffusion models exhibit markedly more
saturated colors (Figure 1.

6. Conclusion and Limitations
We derived a probabilistic framework for designing more
diverse diffusion models by showing an invariance to the dis-
tribution of the diffusion step ∆xk

:= xk − xk+1. Freeing
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up the distributional assumption on ∆xk
allows the end-user

greater control over the stylistic qualities of the generative
model. An open question is whether score matching under
an EMD norm enjoys the same statistical guarantees as the
standard score matching objective, e.g., consistency, effi-
ciency, and asymptotic normality (Hyvärinen, 2006; Song
et al., 2020a). We hope that our theoretical framework opens
the door for the further diversity and improvements in the
design of diffusion models.
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A. Derivations
A.1. KL Divergence Between Laplace Distributions

For completeness, we provide a derivation for the KL divergence between two Laplace distributions. Let p and q be density
functions of distributions Laplace(µ1, b1) and Laplace(µ2, b2), i.e.,

p(x) =
1

2b1
exp

(
−|x− µ1|

b1

)
(15)

q(x) =
1

2b2
exp

(
−|x− µ2|

b2

)
. (16)

Then the KL divergence between the two distributions can be written as

KL(p(x)||q(x)) =
∫ ∞

−∞
p(x) log p(x)dx︸ ︷︷ ︸

∗

−
∫ ∞

−∞
p(x) log q(x)dx︸ ︷︷ ︸

∗∗

(17)

We will first approach ∗∗ as its solution will give us ∗. Plugging in p and q, we have

−
∫ ∞

−∞
p(x) log q(x)dx =

∫ ∞

−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx+ log(2b2),

where in the case that µ1 > µ2, the integral can be written as∫ ∞

−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx

=

∫ µ2

−∞

µ2 − x

2b1b2
exp

(
−µ1 − x

b1

)
dx+

∫ µ1

µ2

x− µ2

2b1b2
exp

(
−µ1 − x

b1

)
dx

+

∫ ∞

µ1

x− µ2

2b1b2
exp

(
−x− µ1

b1

)
dx

=

[
b1
2b2

exp

(
−µ1 − µ2

b1

)]
+

[
µ1 − µ2 − b1

2b2
+

b1
2b2

exp

(
−µ1 − µ2

b1

)]
+

[
µ1 − µ2 + b1

2b2

]
=

µ1 − µ2

b2
+

b1
b2

exp

(
−µ1 − µ2

b1

)
,

and similarly for the case µ1 ≤ µ2,∫ ∞

−∞

|x− µ2|
2b1b2

exp

(
−|x− µ1|

b1

)
dx

=

∫ µ1

−∞

µ2 − x

2b1b2
exp

(
−µ1 − x

b1

)
dx+

∫ µ2

µ1

µ2 − x

2b1b2
exp

(
−x− µ1

b1

)
dx

+

∫ ∞

µ2

x− µ2

2b1b2
exp

(
−x− µ1

b1

)
dx

=

[
µ2 − µ1 + b1

2b2

]
+

[
b1
2b2

exp

(
−µ2 − µ1

b1

)
+

µ2 − µ1 − b1
2b2

]
+

[
b1
2b2

exp

(
−µ2 − µ1

b1

)]
=

µ2 − µ1

b2
+

b1
b2

exp

(
−µ2 − µ1

b1

)
.
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Combining both cases and returning to the original cross entropy term, we have

−
∫ ∞

−∞
p(x) log q(x)dx =

|µ2 − µ1|
b2

+
b1
b2

exp

(
−|µ2 − µ1|

b1

)
+ log(2b2). (18)

Now, letting p = q we can compute the entropy term as∫ ∞

−∞
p(x) log p(x)dx = −1− log(2b1). (19)

Thus, we can conclude that

KL(p(x)||q(x)) = b1
b2

exp

(
−|µ2 − µ1|

b1

)
+

|µ2 − µ1|
b2

+ log
b2
b1

− 1. (20)

A.2. KL Divergence Between a Gaussian Distribution and a Bounded Uniform Distribution

Let p and q denote the density functions of the Uniform([µ1 − b1, µ1 + b1]) and N (µ2, σ2) distributions, respectively. Then

p(x) = 1x∈[µ1−b1,µ1+b1]
1

2b1
(21)

q(x) =
1

σ
√
2π

exp

(
−
(
x− µ2

b2

)2
)
. (22)

Again writing the KL decomposition between p and q as Eq. 17, we note that the entropy term ∗ is identical to that of
Section ??: ∫ ∞

−∞
p(x) log p(x)dx = − log(2b1).

Turning to the cross-entropy term ∗∗:

−
∫ ∞

−∞
p(x) log q(x)dx =

∫ µ1+b1

µ1−b1

1

2b1

(
log(σ

√
2π) +

1

2σ2
(x− µ2)

2

)
dx

= log(σ
√
2π) +

∫ µ1+b1

µ1−b1

1

4b1σ2
(x− µ2)

2dx

= log(σ
√
2π) +

1

4b1σ2

(
1

3
x3 − µ2x

2 + µ2
2x

) ∣∣∣∣∣
µ1+b1

µ1−b1

= log(σ
√
2π) +

1

4b1σ2

[
2b1

(
(µ1 − µ2)

2 +
1

3
b21

)]
Combining terms, we obtain the KL divergence

KL(p(x)||q(x)) = 1

2

(
1

σ2
(µ1 − µ2)

2 + log
π

6
+ 1

)
, (23)

where we note that b1 =
√
3σ.

A.3. KL Divergence Between a Laplace Distribution and a Bounded Uniform Distribution

Let p and q denote the density functions of the Uniform([µ1 − b1, µ1 + b1]) and Laplace(µ2, b2) distributions, respectively.
Then

p(x) = 1x∈[µ1−b1,µ1+b1]
1

2b1
(24)

q(x) =
1

2b2
exp

(
−|x− µ2|

b2

)
. (25)
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We once again write the KL decomposition between p and q as Eq. 17, and begin with the entropy term ∗:∫ ∞

−∞
p(x) log p(x)dx = −

∫ µ1+b1

µ1−b1

log(2b1)

2b1
dx

=
log(2b1)

2b1
(µ1 − b1)−

log(2b1)

2b1
(µ1 + b1)

= − log(2b1).

Turning to the cross-entropy term ∗∗:

−
∫ ∞

−∞
p(x) log q(x)dx =

∫ µ1+b1

µ1−b1

1

2b1

(
log(2b2) +

|x− µ2|
b2

)
dx

= log(2b2) +

∫ µ1+b1

µ1−b1

1

2b1

|x− µ2|
b2

dx.

Considering the case where µ2 < µ1 − b1, the above integral reduces to∫ µ1+b1

µ1−b1

1

2b1b2
|x− µ2|dx =

∫ µ1+b1

µ1−b1

1

2b1b2
x− µ2dx

=
1

2b1b2

(
1

2
x2 − µ2x

) ∣∣∣∣∣
µ1+b1

µ1−b1

=
1

2b1b2
(2b1(µ1 − µ2)) ,

whereas the case µ2 < µ1 − b1 gives∫ µ1+b1

µ1−b1

1

2b1b2
|x− µ2|dx =

∫ µ1+b1

µ1−b1

1

2b1b2
x− µ2dx

=
1

2b1b2

(
µ2x− 1

2
x2

) ∣∣∣∣∣
µ1+b1

µ1−b1

=
1

2b1b2
(2b1(µ2 − µ1)) .

Finally, when µ2 ∈ [µ1 − b1, µ1 + b1], we have∫ µ1+b1

µ1−b1

1

2b1b2
|x− µ2|dx =

1

2b1b2

[∫ µ2

µ1−b1

(µ2 − x)dx+

∫ µ1+b1

µ2

1

2b1b2
(x− µ2)dx

]

=
1

2b1b2

(µ2x− 1

2
x2

) ∣∣∣∣∣
µ2

µ1−b1

+

(
1

2
x2 − µ2x

) ∣∣∣∣∣
µ1+b1

µ2


=

1

2b1b2

[(
1

2
(µ1 − µ2)

2 +
1

2
b21 + b1(µ2 − µ1)

)
+

(
1

2
(µ1 − µ2)

2 +
1

2
b21 + b1(µ1 − µ2)

)]
=

1

2b1b2

[
(µ1 − µ2)

2 + b21
]
.

Combining the cases, we obtain the KL divergence

KL(p(x)||q(x)) =

{
log b2

b1
+ 1

2b1b2
((µ1 − µ2)

2 + b21) µ2 ∈ [µ1 − b1, µ1 + b1]

log b2
b1

+ 1
b2
|µ1 − µ2| µ2 /∈ [µ1 − b1, µ1 + b1]

. (26)
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A.4. Deriving Lk

We use the following lemmas to obtain Eqs. (9) and (10) in Sections 4.1 and 4.2. Throughout this section, we will use

fθ = f(x, t)− 1

2
g(t)2∇x log p(x, t), (27)

f̂θ = f(x, t)− 1

2
g(t)2sθ(x, t), (28)

where f and g are defined as in Eq. (1), to denote the true and learned reverse drift terms described in Eq (2).
Lemma A.1. Let ∆xk

be normally distributed, i.e.,

pθ(∆xk
|xk) = N

(
∆xk

; f̂θ (xk, tk)∆tk , g (tk)
2
∆tk

)
, (29)

q(∆xk
|xk) = N

(
∆xk

; fθ (xk, tk)∆tk , g (tk)
2
∆tk

)
. (30)

Then
Lk = wkEϵ∼q||ϵ− ϵθ(xk, tk)||2, (31)

where wk := g(tk)
2

2σ(tk)2
∆tk .

Proof. Plugging in the closed form solution to the KL divergence between two Gaussian distributions into the likelihood
lower bound,

Lk = KL(pθ(∆xk
|xk)||q(∆xk

|xk))

= E

[
||µpθ,k

(xk)− µq,k(xk)||2

2σ2

]
.

Since µq,k = (f(xk, tk) − g(tk)
2∇ log p(xk))∆tk , µp,k = (f(xk, tk) − g(tk)

2∇ log pθ(xk))∆tk , and σpθ,k = σq,k =

g(tk)
√
∆tk , we have

Lk =
1

2
E
[ ||g(tk)2∇ log p(xk)− g(tk)

2∇ log pθ(xk)||2∆2
tk

g(tk)2∆tk

]
=

1

2
E
[
g(tk)

2||∇ log p(xk)−∇ log pθ(xk)||2∆tk

]
.

Finally, following the parameterization of the score model (i.e., ϵθ(x, t) = σ(tk)∇pθ(x, t)) in (Ho et al., 2020), we may
write

Lk = wkE
[
||ϵ− ϵθ(xk, tk)||2

]
, (32)

where wk := 1
2g(tk)

2σ(tk)
2∆tk , and σ(tk)

2 is as defined in Lemma 3.1.

Lemma A.2. Let ∆xk
be Laplace distributed, i.e.,

pθ(∆xk
|xk) = Laplace

(
∆xk

; f̂θ (xk, tk)∆tk , g (tk)
2
∆tk

)
, (33)

q(∆xk
|xk) = Laplace

(
∆xk

; fθ (xk, tk)∆tk , g (tk)
2
∆tk

)
. (34)

Then, letting rk := ϵ− ϵθ(xk, tk),
Lk = exp (−wk||rk||1)− 1 + wk||rk||1, (35)

where wk := g(tk)
σ(tk)

√
∆tk ..
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Proof. Plugging in the closed form solution to the KL divergence between two Laplace distributions into the likelihood
lower bound (Appendix A.1),

Lk = KL(p(∆xk
|xk)||q(∆xk

|xk))

= exp

(
−||µpθ,k − µq,k||1

σp

)
︸ ︷︷ ︸

dk

−1 +
||µpθ,k − µq,k||1

σp︸ ︷︷ ︸
dk

Observe that dk can be simplified as

dk =
||µpθ,k − µq,k||1

σp

=
g(tk)

2||∇x log p(xk)−∇x log pθ(xk)||1
g(tk)

√
∆tk

=

√
∆tkg(tk)||ϵ− ϵθ(xk, tk)||1

σ(tk)

= vk||ϵ− ϵθ(xk, tk)||1, (36)

where vk := g(tk)
σ(tk)

√
∆tk . Therefore,

Lk = (−vk||ϵ− ϵθ(xk, tk)||1)− 1 + vk||ϵ− ϵθ(xk, tk)||1.

Lemma A.3. Let pθ(∆xk
|xk+1) be normally distributed and q(∆xk

|xk+1) be the uniform distribution on the interval
[µ1 −

√
3σ, µ1 +

√
3σ], i.e.,

pθ(∆xk
|xk) = N

(
∆xk

; f̂θ (xk, tk)∆tk , g (tk)
2
∆tk

)
(37)

q(∆xk
|xk) = Uniform

(
∆xk

; fθ (xk, tk)∆tk , g (tk)
2
∆tk

)
. (38)

Then
Lk = wkEϵ||ϵ− ϵθ(xk, tk)||2 + C, (39)

where wk := g(tk)
σ(tk)

√
∆tk and C = 1

2

(
1 + log π

6

)
.

Proof. Plugging in the closed form solution to the KL divergence between a Gaussian distribution and a Uniform distribution
(Appendix A.2), we have

Lk = KL(p(∆xk
|xk)||q(∆xk

|xk))

= E

[
||µpθ,k

(xk)− µq,k(xk)||2

2σ2

]
+ C,

where C = 1
2

(
1 + log π

6

)
. Since the expectation is the same as Eq. 32 in Theorem A.1, we are done.

Lemma A.4. Let pθ(∆xk
|xk+1) be Laplace distributed and q(∆xk

|xk+1) be the uniform distribution on the interval
[µ1 −

√
3σ, µ1 +

√
3σ], i.e.,

pθ(∆xk
|xk) = Laplace

(
∆xk

; f̂θ (xk, tk)∆tk , g (tk)
2
∆tk

)
(40)

q(∆xk
|xk) = Uniform

(
∆xk

; fθ (xk, tk)∆tk , g (tk)
2
∆tk

)
. (41)
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Then

Lk =

{
wkEϵ||ϵ− ϵθ(xk, tk)||2 + 1

2 µ2 ∈ [µ1 −
√
3σ, µ1 +

√
3σ]

vkEϵ||ϵ− ϵθ(xk, tk)||1 µ2 /∈ [µ1 −
√
3σwk, µ1 +

√
3σwk]

, (42)

where wk := g(tk)
σ(tk)

√
∆tk and vk :=

√
wk.

Proof. Plugging in the closed form solution to the KL divergence between a Laplace distribution and a Uniform distribution
(Appendix A.3), we have

Lk =


E
[
||µpθ,k(xk)−µq,k(xk)||2

σ2

]
+ 1

2 µ2 ∈ [µ1 −
√
3σ, µ1 +

√
3σ]

E
[
||µpθ,k(xk)−µq,k(xk)||1

σ

]
µ2 /∈ [µ1 −

√
3σ, µ1 +

√
3σ]

.

We observe that the event µ2 ∈ [µ1 −
√
3σ, µ1 +

√
3σ] is equivalent to the event ϵ(x, t) ∈ [ϵ −

√
3σwk, µ1 +

√
3σwk].

Using Eqs. 32 and 36 from Theorems A.1 and A.2 respectively, we are done.

B. Proofs
B.1. Simple Properties of Structured Random Walks

We show several immediate properties of structured random walks discussed in Section 3.1.
Theorem 3.1 (Moments of Structured Random Walks). Let xk be a structured random walk and f(x, tk) = β(tk)x be linear.
Then

µ(tk) := E[xk] = ᾱkx0 and σ(tk)
2 := Var(xk) = γ̄k,

where ᾱk =
∏k

i=1 (1 + βi) and γ̄k =
∑k

i=1

(
ᾱk

ᾱi+1
gi

)2
. For notational convenience, we let βi := β(ti)∆tk and gi :=

g(ti)
√
∆tk .

Proof. We first show the derivation for E[xk]. Observe that

E[xk] = E[xk−1 +∆xk
]

= E
[
xk−1 + f (xk−1, tk)∆tk + g (tk) zk

√
∆tk

]
= E[xk−1] (1 + β (tk)∆tk) .

Applying this operation k − 1 more times, we obtain

E[xk] = E[x0]

k∏
i=1

(1 + β (ti)∆tk) .

Turning to Var(xk), we first note that

E[x2
k] = E[(xk−1 +∆xk

)2]

= E[x2
k−1] + E[∆2

xk
] + 2E[xk−1∆xk

]

where

E[xk−1∆xk
] = E

[
xk−1

(
f (xk−1, tk)∆tk + g (tk) zk

√
∆tk

)]
= β (tk)∆tkE

[
x2
k−1

]
+ g (tk)

√
∆tkE [xk−1zk]

= β (tk)∆tkE
[
x2
k−1

]
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and

E[∆2
xk
] = E

[
(f (xk−1, tk)∆tk)

2
+
(
g (tk) zk

√
∆tk

)2
+ 2 (f (xk−1, tk)∆tk)

(
g (tk) zk

√
∆tk

)]
= β (tk)

2
∆2

tk
E
[
x2
k−1

]
+ g (tk)

2
∆tkE

[
z2k
]
+ β (tk) g (tk)∆

3
2
tk
E[xk−1zk]

= β (tk)
2
∆2

tk
E
[
x2
k−1

]
+ g (tk)

2
∆tk

Putting things together, we have

E[x2
k] = E[(xk−1 +∆xk

)2]

= E[x2
k−1] + E[∆2

xk
] + 2E[xk−1∆xk

]

= E[x2
k−1]

(
1 + β (tk)

2
∆2

tk
+ 2β (tk)∆tk

)
+ g (tk)

2
∆tk

= E[x2
k−1] (1 + β (tk)∆tk)

2
+ g (tk)

2
∆tk .

This gives, by induction,

E[x2
k] = E[x2

0]

k∏
i=1

(1 + β (ti)∆tk)
2
+

k∑
j=1

k∏
i=j+1

(1 + β (ti)∆ti)
2
g (tj)

2
∆tj .

Finally, we can write

Var(xk) = E[x2
k]− E[xk]

2

= Var(x0)

k∏
i=1

(1 + β (ti)∆tk)
2
+

k∑
j=1

k∏
i=j+1

(1 + β (ti)∆ti)
2
g (tj)

2
∆tj .

Assuming that Var(x0) = 0, we now have

σ2
k := Var(xk) =

k∑
j=1

k∏
i=j+1

(1 + β (ti)∆ti)
2
g (tj)

2
∆tj . (43)

B.2. Deriving Previous Methods in Our Framework

Corollary 3.1. Let xk be a structured random walk, zk be normally distributed, and f(x, t) = β(t)x where β(t) is one of
the noise schedules defined in (Sohl-Dickstein et al., 2015; Ho et al., 2020; Kingma et al., 2021). Then we recover their
respective forward processes.

Denoising Diffusion Probabilistic Models We first examine the forward processes in (Ho et al., 2020) and (Sohl-Dickstein
et al., 2015), which have the forward Markov chain

pθ(xk+1|xk) = N (xk+1;
√
1− βkxk, βkI), (44)

and thus that xk+1 may be written in terms of xk as

xk+1 =
√
1− βkxk +

√
βkϵ, (45)

where ϵ ∼ N (0, I). Subtracting xk from both sides and leveraging the fact that xk and xk−1 are both normally distributed,
we obtain

∆xk
= (
√

1− βk − 1)xk +
√
βkϵ. (46)

Now, we see that we can clearly write Eq. (46) as a structured random walk (Eq. 8). Applying Theorem 3.1, we have that

ᾱk =

k∏
i=1

(
√
1− βi) γ̄k =

k∑
i=1

(
ᾱk

ᾱi+1

)2

βi. (47)

This converges numerically to the form given in (Ho et al., 2020)

p(xk|x0) = N (xk; ᾱkx0, (1− ᾱ2)I). (48)
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Variational Diffusion Models We can obtain a similar closed form solution for the forward process in (Kingma et al.,
2021). The sampling chain of the process can be written as

p(xt) = N
(
xk+1;

αk+1

αk
xk, σ

2
k+1 −

(
αk+1

αk

)
σ2
k

)
, (49)

where αk and σk are related to each other by a monotonic function γ(t)

α2
k = sigmoid(−γ(t)), (50)

σ2
k = sigmoid(γ(t)). (51)

According to Eq. 49, xk+1 can be written in terms of xk as

xk+1 =
αk+1

αk
xk +

(
σ2
k+1 −

(
αk+1

αk

)
σ2
k

)
ϵ, (52)

where ϵ ∼ N (0, I). Subtracting off xk on both sides, we obtain

∆xk+1
=

(
αk+1

αk
− 1

)
xk +

(
σ2
k+1 −

(
αk+1

αk

)
σ2
k

)
ϵ. (53)

Now we can once again apply Theorem 3.1, and see that

ᾱk =

k∏
i=1

αi+1

αi
= αk (54)

and

γ̄k =

k∑
i=1

αk

αi

(
σ2
i+1 −

(
αi

αi−1

)
σ2
i

)
(55)

=

k∑
i=1

αk

αi
σ2
i+1 −

αk

αi−1
σ2
i (56)

= σ2
k, (57)

which agrees with Eq. ??.

B.3. Regularity Conditions

To show our main result, we state the following regularity conditions. Assumptions 1 and 2 are standard for finite-step
discretizations of SDEs (Särkkä & Solin, 2019). Assumption 3 simplifies the subsequent proof for tightness.
Assumption 1 (f and g are Lipschitz). There exists K > 0 such that, for any x,y ∈ Rd and t, s ∈ [0, 1]

||f(x)− f(y)|| ≤ K||x− y||, and |g(t)− g(s)| ≤ K|t− s|. (58)

Assumption 2 (Linear growth of f and g). There exists K > 0 such that, for any x ∈ Rd and t ∈ [0, 1]

||f(x)|| ≤ K(1 + ||x||), and |g(t)| ≤ K(1 + |t|). (59)

Assumption 3 (Integrability of zk.). There exists K ∈ R such that

E[||zk||4]) < K. (60)
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B.4. Main Result

Our theorem below can be seen as a generalization of Donsker’s Invariance Principle, and certain parts of the proof resembles
that of the original theorem. Differences appear where we can no longer rely on the independence of the increments ∆xk

,
which is heavily utilized in the original proof. By exploiting the structural properties of Definition 1, we can decompose xk

into a set of auxiliary processes with the same limit, which we can show to converge to X with techniques borrowed from
the strong convergence of SDE solvers and central limit theorems.
Theorem 3.3 (Structured Invariance Principle). Suppose regularity conditions hold and {xk}nk=1 is a structured random
walk on Rd. Let xT (t) = x0 +

∑nt

k=1 ∆xk
be the continuous-time càdlàg extension of xk, where nt = ⌊t ∗ T ⌋. Then xT

converges in distribution to x(t), as ∆tk → 0.

Proof. Using Eq. 8 we may define the continuous-time extension of xk as the process

xT (t) = x0 +

⌊t∗T⌋∑
i=1

∆(T )
xi

+ (t ∗ T − ⌊t ∗ T ⌋)∆(T )
x⌈t∗T⌉

, (61)

which is produced by linearly interpolating between the iterates of the random walk. We write the increments

∆(T )
xi

:= xk+1 − xk = f(xk, tk)∆
(T )
tk

+ g(tk)

√
∆

(T )
tk

Z
(T )
k (62)

with the superscript (T ) to emphasize its dependence on T . We show convergence by invoking the following theorem.

Theorem B.1. (Theorem 13.1 from (Billingsley, 2013).) Let {xT },x be processes (with associated probability measures
{PT },P) such that xT converges to x in finite dimensional distributions (f.d.d.), i.e., for any k time steps t1, t2, . . . , tk,

(xT (t1),xT (t2), . . . ,xT (tk))
D−−→ (x(t1),x(t2), . . . ,x(tk)). (63)

If {PT } are also tight, then xT ⇒T x.

Theorem B.1 relates the pointwise weak convergence (of a sequence of marginals of a process) on a finite set of points
to weak convergence of the path measures. This is made possible by Prohorov’s theorem, which connects tightness to
relative compactness. Thus, to show convergence, we must show two conditions are satisfied: 1) convergence in f.d.d., and
2) tightness of the associated sequence of measures. These are given by the following two lemmas.

Lemma B.1. The sequence of measures {Pxk
}Tk=1 corresponding to the structured random walk {xk}Tk=1 is tight.

Lemma B.2. The continuous-time random walk interpolation xT converges in finite dimensional distributions (f.d.d.) to the
diffusion process (i.e., solution to Eq. (1) x.

Combining Theorem B.1 with Lemmas B.1 and B.2, we obtain our result.

Proof. (of Lemma B.1)

The result can be obtained via Kolmogorov’s tightness criterion, which provides the following sufficient condition for
tightness:

sup
n

E [||xn(s)− xn(t)||p] ≤ C|s− t|1+ϵ, for some ϵ > 0, p ≥ 1 + ϵ. (64)

We shall demonstrate Eq. 64 for ϵ = 1, p = 4. For any s, t ∈ [0, T ], choose k, ℓ such that

s ∈

[
k − 1

n
,
k

n

)
and t ∈

[
ℓ− 1

n
,
ℓ

n

)
. (65)
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First, observe that, applying Definition 1, Assumption 2, and the fact that zk ∈ L4 =⇒ E[||zk||4] ≤ M for some M ∈ R
and all k ∈ {0, . . . , n},

E[||xn(s−∆t)− xn(s)||4] = E[||∆xk
||4]

= E
[∣∣∣∣∣∣∣∣f(xk)∆t+ g

(
k

n

)
zk

√
∆t

∣∣∣∣∣∣∣∣
4

]
≤ ∆tE[||f(xk)||4] +

√
∆t

∣∣∣∣g(k

n

)∣∣∣∣E[||zk||4]]
≤ ∆tE[K(1 + ||xk||4)] +

√
∆tKM

(
1 +

k

n

)
≤ C

√
∆t, (66)

where C1 ≤ O(
√
∆t).

We will bound E
[
||xn(s)− xn(t)||4

]
in three regimes:

Case 1: k = ℓ

E [||xn(s)− xn(t)||4] = E

[∣∣∣∣∣
∣∣∣∣∣x0 +

k−1∑
i=1

∆xi
+ (ns− k)∆xk

− x0 −
ℓ−1∑
i=1

∆xi
− (nt− ℓ)∆ℓ

∣∣∣∣∣
∣∣∣∣∣
4

]
= E

[
||(ns− k)∆xk

− (nt− k)∆xk
||4
]

≤ (n|t− s|)E [||∆xk
||4]

≤ C1

√
n|t− s|,

where we used Eq. 66 the fact that ∆t = 1
n . Finally, since k = ℓ =⇒ |t− s| ≤ n−1, we take the fourth power of both

sides of the inequality to obtain

E
[
||xn(s)− xn(t)||4

]
≤ C1|t− s|2. (67)

Case 2: k = ℓ+ 1

E [||xn(s)− xn(t)||4] = E

[∣∣∣∣∣
∣∣∣∣∣x0 +

k−1∑
i=1

∆xi + (ns− k)∆xk
− x0 −

ℓ−1∑
i=1

∆xi − (nt− ℓ)∆ℓ

∣∣∣∣∣
∣∣∣∣∣
4

]
= E

[
||∆ℓ + (ns− k)∆xk

− (nt− ℓ)∆ℓ||4
]

= E
[
||(ns− k)∆xk

− (nt− k)∆ℓ||4
]

≤ |(ns− nt)|E [||∆xk
||4]

≤ C1

√
n|t− s|,

where we again use Eq. 66 the fact that ∆t = 1
n . This time, we have that |t− s| ≤ 2n−1. Therefore,

E
[
||xn(s)− xn(t)||4

]
= 4C1|t− s|2. (68)
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Case 3: k > ℓ+ 2

E[||xn(s)− xn(t)||4]

≤ E

[ ∣∣∣∣∣∣∣∣xn(s)− xn

(
k − 1

n

)∣∣∣∣∣∣∣∣
4

+

∣∣∣∣∣∣∣∣xn

(
k − 1

n

)
− xn

(
ℓ− 1

n

)∣∣∣∣∣∣∣∣
4

+

∣∣∣∣∣∣∣∣xn(t)− xn

(
ℓ− 1

n

)∣∣∣∣∣∣∣∣
4

]

≤ C1

√
s− k − 1

n
+ E

[∣∣∣∣∣∣∣∣xn

(
k − 1

n

)
− xn

(
ℓ− 1

n

)∣∣∣∣∣∣∣∣
4

]
+ C1

√
t− ℓ− 1

n

≤ C1

(√
s− k − 1

n
−
√
t− ℓ− 1

n

)
+ E

[∣∣∣∣∣∣∣∣xn

(
k − 1

n

)
− xn

(
ℓ− 1

n

)∣∣∣∣∣∣∣∣
4

]
︸ ︷︷ ︸

(∗)

Inspecting (∗), we can see that

E
[∣∣∣∣∣∣∣∣xn

(
k − 1

n

)
− xn

(
ℓ− 1

n

)∣∣∣∣∣∣∣∣
4

]
= E

[∣∣∣∣∣
∣∣∣∣∣x0 +

k−1∑
i=1

∆xi
− x0 −

ℓ−1∑
i=1

∆xi

∣∣∣∣∣
∣∣∣∣∣
4

]

= E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

∆xi

∣∣∣∣∣
∣∣∣∣∣
4


≤

k−1∑
i=ℓ−1

E[||f(xi)∆t||] + E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

g

(
i

n

)
zi
√
∆t

∣∣∣∣∣
∣∣∣∣∣
4


≤ C1

√
k

n
− ℓ

n
+ E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

g

(
i

n

)
zi
√
∆t

∣∣∣∣∣
∣∣∣∣∣
4

 . (69)

We make the following observation about the second term in Eq. 69.

Lemma B.3.

E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

g

(
i

n

)
zi
√
∆t

∣∣∣∣∣
∣∣∣∣∣
4
 ≤ C2

(
k

n
− ℓ

n

)2

(70)

Proof. Letting Wi := g
(
i
n

)
zi
√
∆t, the second term in Eq. 69, taken to the fourth power, can be written as

E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

g

(
i

n

)
zi
√
∆t

∣∣∣∣∣
∣∣∣∣∣
4
 = E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
4
 , (71)

where E[Wi] = 0 and E[W2
i ] = g2

(
i
n

)
∆t. The result will be shown by induction. Separating an element of the sum and

then expanding the norm, we can write this term as

E

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi +Wk−1

∣∣∣∣∣
∣∣∣∣∣
4
 = E

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
4

+

∣∣∣∣∣
∣∣∣∣∣Wk−1

∣∣∣∣∣
∣∣∣∣∣
4

+

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
2 ∣∣∣∣∣
∣∣∣∣∣Wk−1

∣∣∣∣∣
∣∣∣∣∣
2
 ,
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where the odd terms containing first moments of Wi go to zero. Leveraging Assumption 2 and the fact that zk ∈ L4 we can
further simplify left hand side to

E

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi +Wk−1

∣∣∣∣∣
∣∣∣∣∣
4
 ≤ E

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
4
+M4

(
g4
(
k − 1

n

)
(∆t)2

)

+

(
k−2∑

i=ℓ−1

M2g2
(
i

n

)
∆t

)(
g2
(
k − 1

n

)
∆t

)

≤ E

∣∣∣∣∣
∣∣∣∣∣

k−2∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
4
+ C2(k − ℓ)(∆t)2.

Applying this operation k − ℓ− 1 more times, we obtain our desired result

E

∣∣∣∣∣
∣∣∣∣∣

k−1∑
i=ℓ−1

Wi

∣∣∣∣∣
∣∣∣∣∣
4
 ≤ C2(k − ℓ)2(∆t)2

= C2

(
k

n
− ℓ

n

)2

.

Assembling the parts, we obtain

E[||xn(s)− xn(t)||4] ≤ C1

[(
s− k − 1

n

)2

−
(
t− ℓ− 1

n

)2

+

(
k

n
− ℓ

n

)2
]
+ C2

(
k

n
− ℓ

n

)2

≤ C3|t− s|2. (72)

Finally, we combine Eqs. 67, 68, and 72, which provides a bound that satisfies Kolmogorov’s tightness criterion:

E[||xn(s)− xn(t)||4] ≤ max(4C1, C3)|t− s|2. (73)

Proof. (of Lemma B.2)

Let us define the auxiliary processes

x̃T (t) = x0 +

⌊t∗T⌋∑
i=1

∆̃
(T )

xi
+ (t ∗ T − ⌊t ∗ T ⌋)∆̃

(T )

x⌈t∗T⌉
(74)

xT,S(t) = x0 +

⌊t∗T⌋∑
i=1

∆(T,S)
xi

+ (t ∗ T − ⌊t ∗ T ⌋)∆(T,S)
x⌈t∗T⌉

, (75)

where

∆̃
(T )

xk
= f(xk, tk)∆tk + g(tk)W(∆tk) (76)

∆(T,S)
xk

= f(xk, tk)∆
(T )
tk

+

S−1∑
i=0

g(tk)

√
∆

(T )
tk

z
(S∗T )
k+Ti , (77)

and W(∆tk) := N (0, I ∗∆tk). Slightly overloading our notation and letting

A({ti}ki=1) := (A(t1), . . . ,A(tk)) (78)
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for a diffusion process A(t) evaluated at times (t1, t2, . . . , tk), we may obtain the desired result by observing that

lim
T→∞

CDF[xT ({ti}ki=1)] (79)

= lim
T→∞

lim
S→∞

CDF[xT ({ti}ki=1) + (xT,S({ti}ki=1)− xT ({ti}ki=1))] (80)

= lim
T→∞

lim
S→∞

CDF[xT,S({ti}ki=1)] (81)

= lim
T→∞

CDF[x̃T ({ti}ki=1)] Lemma B.4 (82)

= CDF[x({ti}ki=1)]. Lemma B.5 (83)

Next, we may interpret x̃T (t) (Eq. 74) as a variant of xT (t) (Eq. (61) with ”normalized” increments, which can be formally
shown to be the limit of xT,S(t) (Eq. 75) as S → ∞ by the central limit theorem.
Lemma B.4. Let xT,S(t) and x̃T (t) be defined as above. Then xT,S(t) converges in f.d.d. to x̃T (t).

Finally, the result x̃T
f.d.d.−→ x can be shown via techniques that follow closely to the proof for the strong convergence of SDE

solvers. For i ∈ {0, . . . , n} and t ∈ [0, T ] we let

x(t) =

n∑
k=1

xk1t∈[tk,tk+1)(t) (84)

be the continuous-time càdlàg extensions of the random walk xk. Now, x̃T can also be written as the Itô integral

x̃T = x(0) +

∫ t

0

f(x(s))ds+

∫ t

0

g

(
⌊s ∗ T ⌋

n

)
dWs. (85)

Of course, the solution x to Eq. 1 can also be expressed in the similar form

x(t) = x(0) +

∫ t

0

f(x(s))ds+

∫ t

0

g(s)dWs. (86)

Now we may state the following lemma.
Lemma B.5. Let x̃T be defined as above and Assumption 1 hold. Then x̃T converges to x in finite dimensional distributions
(f.d.d.).

Proof. (of Lemma B.4)

Observe that Eq. (74) can be seen as the continuous-time interpolation of the random walk

x̃
(T )
k+1 = x̃

(T )
k + f(x̃

(T )
k , tk)∆tk + g(tk)

√
∆tkW(∆tk), (87)

and Eq. (75) of the random walk

x
(T,S)
k+1 = x

(T,S)
k + f(x

(T,S)
k , tk)∆tk +

S∑
i=1

g(tk)

√
∆

(T )
tk

z
(S∗T )
k+Ti . (88)

Applying the Central Limit Theorem, we may see that

Ak :=

S∑
i=1

g(tk)

√
∆

(T )
tk

z
(S∗T )
k+Ti

D−→ g(t)
√
∆tkW(∆tk)

for each 0 ≤ k < T . We now show our result by recursion. In the base case we have that x(T,S)
0 := x̃

(T )
0 := x0, so

clearly x
(T,S)
0

D−→ x̃
(T )
0 . For any subsequent k + 1 > 0, we may invoke Slutsky’s Theorem on the independent sequences

x
(T,S)
k

D−→ x̃
(T )
k and Ak

D−→ g(t)
√
∆tkW(∆tk) to obtain

x
(T,S)
k+1 := x

(T,S)
k +Ak

D−→ x̃
(T )
k + g(t)

√
∆tkW(∆tk) =: x̃

(T )
k+1. (89)
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Therefore, we have that x(T,S)
k+1

D−→ x
(T )
k+1 for all k. Since Eqs. 74 and 75 are purely functions of t and their respective

random walks (Eqs. 87 and 88), we have our result.

Proof. (of Lemma B.5) Let us define

ϵ(t) = sup
0≤s≤t

E
[∣∣∣∣Yn(s)− x(s)

∣∣∣∣2] . (90)

Recalling the definitions x(t) := x⌊nt⌋ and z̄(t) = z⌊nt⌋, we have

ϵ(t) = sup
0≤s≤t

E

[∣∣∣∣∣
∣∣∣∣∣
∫ s

0

[f(x(u))− f(x(u))]du+

∫ s

0

[
g

(
⌊n · u⌋

n

)
− g(u)

]
dWu

∣∣∣∣∣
∣∣∣∣∣
2]

≤ 4 sup
0≤s≤t

E

[∣∣∣∣∣
∣∣∣∣∣
∫ s

0

[f(x(u))− f(x(u))]du

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣
∫ s

0

[
g

(
⌊n · u⌋

n

)
− g(u)

]
dWu

∣∣∣∣∣
∣∣∣∣∣
2]

.

Invoking the Itô isometry, Cauchy-Schwarz inequality, and linearity of expectations,

ϵ(t) ≤ 4 sup
0≤s≤t

(
tE
[ ∫ s

0

∣∣∣∣∣∣∣∣f(x(u))− f(x(u))

∣∣∣∣∣∣∣∣2du]+ E
[ ∫ s

0

∣∣∣∣∣∣∣∣g(⌊n · u⌋
n

)
− g(u)

∣∣∣∣∣∣∣∣2du]
)
.

We now leverage Assumption 1 to obtain

ϵ(t) ≤ 4K sup
0≤s≤t

(
tE
[ ∫ s

0

∣∣∣∣∣∣∣∣x(u))− x(u)

∣∣∣∣∣∣∣∣2du]+ E
[ ∫ s

0

1

n2
du

])
.

Applying Theorem 4.5.4 in (Kloeden & Platen, 1992) and folding all constants that depend on T,E[X0],K into C, we have

ϵ(t) ≤ C

(∫ s

0

ϵ(u)du+∆t

)
,

which, by Gronwall’s inequality, results in the bound

sup
0≤s≤T

E
[
|Yn(s)− x(s)|2

]
= ϵ(T ) ≤ C∆t. (91)

Now, fix k and choose times t1, . . . , tk. We see that

E[||(Yn(t1), . . . ,Yn(tk))− (Y(t1), . . . ,Y(tk))||2] ≤
k∑

i=1

E[||Yn(ti)−Y(ti)||2]

≤ k sup
0≤s≤T

E
[
|Yn(s)− x(s)|2

]
≤ kC∆t → 0

as ∆t → 0. This shows (Yn(t1), . . . ,Yn(tk))
L2−−→ (Y(t1), . . . ,Y(tk)), which implies the desired result.

C. Implementation
We use directly with no changes the models and training protocols in (Kingma et al., 2021) to parameterize our score network
ϵ(x, t) to evaluate the log-likelihoods of our proposed diffusion models. To evaluate FID, we instead use the architecture
and training procedures in (Karras et al., 2022), again with no changes. All training is performed on NVIDIA RTX A6000
GPUs.


