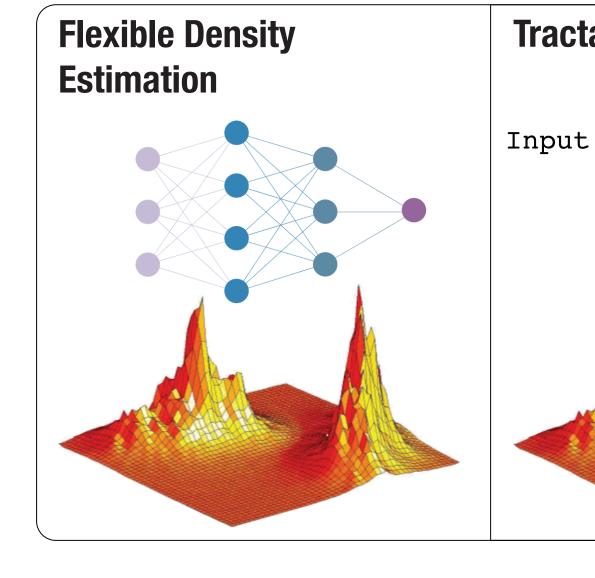
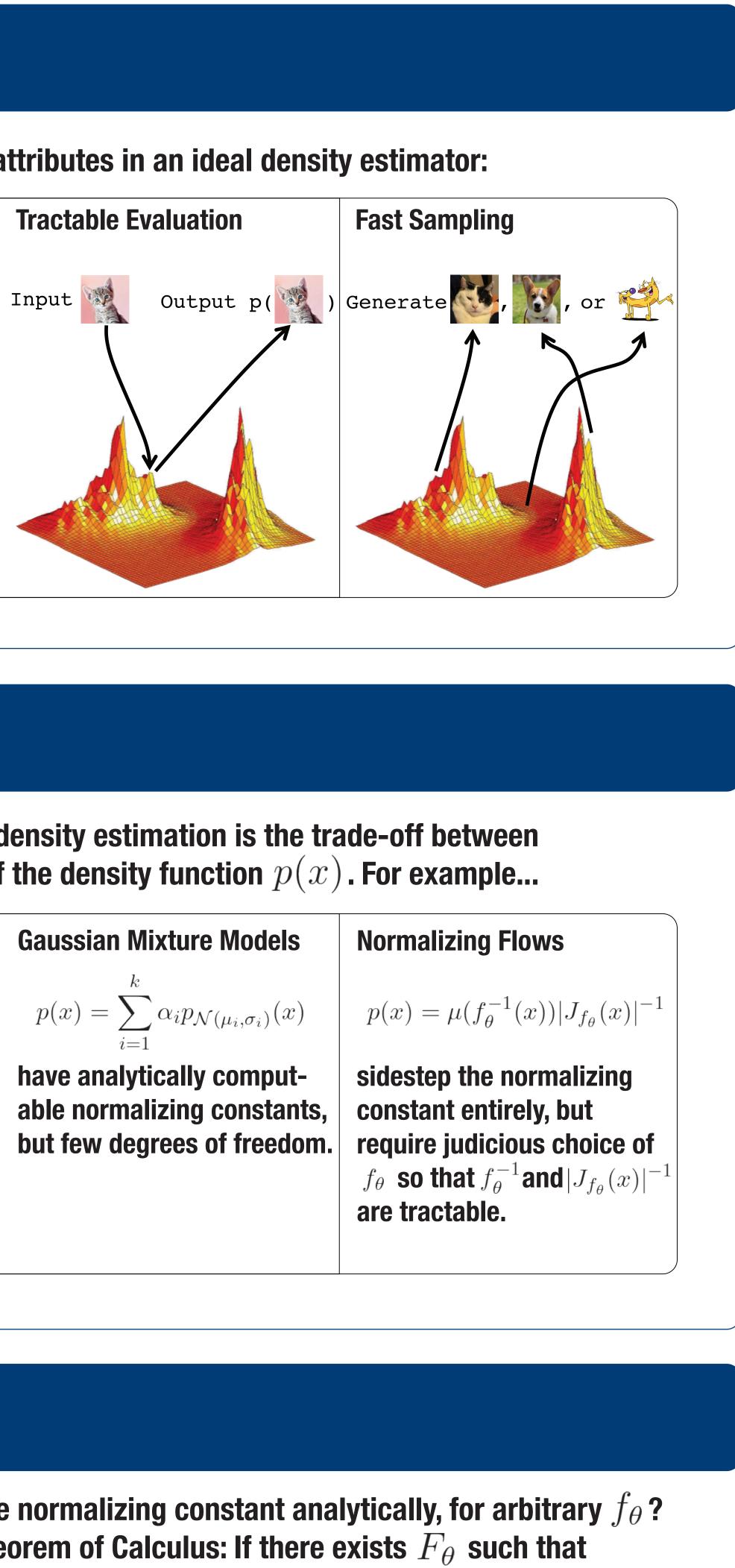


Desiderata

We consider the following attributes in an ideal density estimator:





Problem

A fundamental obstacle in density estimation is the trade-off between tractability and flexibility of the density function p(x). For example...

Energy Based Models

$$p(x) = e^{-f_{\theta}(x)} / Z_{f_{\theta}}$$

can have arbitrarily powerful f_{θ} , but require estimation of the normalizing constant $Z_{f_{ heta}}$, which usually requires numerical integration.

$$p(x) = \sum_{i=1}^{k} \alpha_i p_{\mathcal{N}(\mu_i,\sigma_i)}(x)$$

Solution

What if we can compute the normalizing constant analytically, for arbitrary $f_{ heta}$? Recall the Fundamental Theorem of Calculus: If there exists F_{θ} such that

$$\frac{dF_{\theta}}{dx} = f_{\theta} \text{ for all } x \in [A, B],$$

then

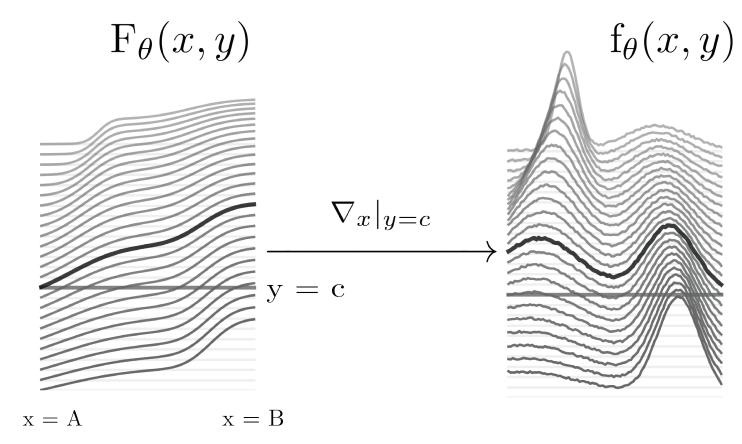
$$\int_{A}^{B} f_{\theta}(x) dx = F_{\theta}(B) - F_{\theta}(A).$$

This basic strategy can be extended to higher dimensions via the Gradient Theorem. Therefore, by representing F_{θ} as a neural network, the above condition is always fulfilled, and so we retain the flexibility of an arbitrarily powerful f_{θ} while retaining the tractability of $Z_{f_{\theta}}$.

Neural Inverse Transform Sampler

Our Method

We call the resulting network a Probabilistically Normalized Network (PNN), which



Above: An illustration of a two-dimensional PNN. To compute $\rho_{\theta}(x|y)$, we first differentiate w.r.t. x while holding y constant. Then, we divide by $F_{\theta}|_{y=c}$ evaluated at the boundaries x = A and x = B.

By decomposing n-dimensional densities autoregressively via the probabilistic chain rule, we can model arbitrary densities:

tion of each conditional density, we can easily invert it via bisection search, and sample from each conditional density via the Inverse Transform Method:

1. sample $z \sim \text{Uniform}[0, 1]$, **2. compute** $x = (F_{\theta}/Z_{f_{\theta}})^{-1}(z)$

where x is now distributed as the desired density.

NITS is a Universal Density Estimator

The resulting estimator can universally approximate any continuous autoregressive random variable with compact support:

Corollary 1. Let $\rho(x)$ be a general joint density for a ddimensional autoregressive random variable, i.e. takes on the form

$$\rho(x) = \rho(x_d | x_{d-1},$$

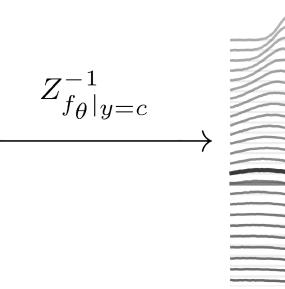
Then there exists a set of PNNs $\{F_{\theta_i}\}_{i=1}^d$ that induce a ρ_{θ_i} such that for any $\epsilon > 0$,

 $||\rho_{\theta}(x) - \rho(x)||_1 < \epsilon.$

Henry Li¹, Yuval Kluger¹

can model arbitrary continuous, compactly supported conditional densities $\rho_{\theta}(x|y)$.

 $\rho_{\theta}(x|y)$



 $\rho_{\theta}(x_1, x_2, \dots, x_n) = \prod_{i=1}^{n} \rho_{\theta}(x_i | x_{< i}).$

Since the normalized network $F_{ heta}/Z_{f_{ heta}}$ represents the cumulative distribution func-

$$(z)$$
,

- $,\ldots,x_1)\ldots\rho(x_1).$

Empirical Results

NITS achieves state-of-the-art performance on density estimation tasks on tabular data, among normalizing flow-based density estimators.

MODEL
MAF
TAN
NAF
B-NAF
FFJORD
SOS
NSF
REALNVP
MADE MoG
NITS-MLP (OURS)
NITS-CONV (OURS)

NITS also performs favorably in a generative modeling setting with images, when compared against normalizing flow-based models and autoregressive models.

Figure 2. Randomly generated images from DISCRETE NITS-CONV (top left) and NITS-CONV (top right). Compare with competing discretized and continuous density models, Pixel CNN (bottom left) and Flow++ (bottom right), respectively.

\mathbf{A} ¹Applied Mathematics Program, Yale University

POWER	GAS	HEPMASS	MINIBOONE	BSDS300
0.30 ± 0.01	9.59 ± 0.02	-17.39 ± 0.02	-11.68 ± 0.44	156.36 ± 0.28
0.48 ± 0.01	11.19 ± 0.02	-15.12 ± 0.02	-11.01 ± 0.48	157.03 ± 0.07
0.62 ± 0.02	11.91 ± 0.13	-15.09 ± 0.40	$\textbf{-8.86} \pm \textbf{0.15}$	157.73 ± 0.04
0.61 ± 0.01	12.06 ± 0.02	-14.71 ± 0.02	-8.95 ± 0.07	157.36 ± 0.03
0.46 ± 0.01	8.59 ± 0.12	-14.92 ± 0.08	-10.43 ± 0.04	157.40 ± 0.19
0.60 ± 0.01	11.99 ± 0.41	-15.15 ± 0.10	-8.90 ± 0.11	157.48 ± 0.41
$\textbf{0.66} \pm \textbf{0.01}$	13.09 ± 0.02	-14.01 ± 0.03	-9.22 ± 0.48	157.31 ± 0.28
0.17 ± 0.01	8.33 ± 0.14	-18.71 ± 0.02	-13.84 ± 0.52	153.28 ± 1.78
0.40 ± 0.01	8.47 ± 0.02	-15.15 ± 0.02	-12.27 ± 0.47	153.71 ± 0.28
$\textbf{0.66} \pm \textbf{0.01}$	$\textbf{13.20} \pm \textbf{0.01}$	$\textbf{-12.93} \pm \textbf{0.02}$	-10.85 ± 0.02	155.91 ± 0.21
-	-	-	-	$\textbf{163.35} \pm \textbf{0.22}$

CIFAR-10
3.14
3.03
3.00
2.92
2.90
2.85
2.94
3.49
3.35
3.08
2.97

