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Desiderata

-

We consider the following attributes in an ideal density estimator:

" Flexible Density Tractable Evaluation

Estimation

Fast Sampling

Generatep,m, or W=sis
’%—-. )

-

Problem

-

A fundamental obstacle in density estimation is the trade-off between
tractability and flexibility of the density function p(x ). For example...

-
Energy Based Models Gaussian Mixture Models Normalizing Flows
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have analytically comput- | sidestep the normalizing
able normalizing constants, | constant entirely, but
but few degrees of freedom. | require judicious choice of
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are tractable.

can have arbitrarily
powerful /o, but require
estimation of the normal-
izing constant Z;,, which
usually requires numerical
integration.
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What if we can compute the normalizing constant analytically, for arbitrary o ?
Recall the Fundamental Theorem of Calculus: If there exists /'y such that

ity _ fo for all x € [A, B|,
dx

then 5
/A fo(z)dz = Fy(B) — Fy(A)

This basic strategy can be extended to higher dimensions via the Gradient
Theorem. Therefore, by representing /y as a a neural network, the above condition
is always fulfilled, and so we retain the flexibility of an arbitrarily powerful fo while
retaining the tractability of £ ¢, .

-

Our Method

We call the resulting network a Probabilistically Normalized Network (PNN), which
can model arbitrary continuous, compactly supported conditional densities Vg (SC \ Y )
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Above: An illustration of a two-dimensional PNN. To compute ¢ (SC \y) , we first
differentiate w.r.t. & while holding ¥ constant. Then, we divide by Fjy \yzc
evaluated at the boundaries xr = Aandx = B.

By decomposing n-dimensional densities autoregressively via the probabilistic
chain rule, we can model arbitrary densities:

n
po(T1,T2,. .., Tn) = H po(Ti|r<i).
i=1

Since the normalized network F /Z ¢, represents the cumulative distribution func-
tion of each conditional density, we can easily invert it via bisection search, and
sample from each conditional density via the Inverse Transform Method:

1.sample 2z ~ Uniform|0, 1]
2.compute © = (Fy/Z;,) 1 (2),

where X is now distributed as the desired density.

NITS is a Universal Density Estimator

The resulting estimator can universally approximate any continuous autoregressive
random variable with compact support:

Corollary 1. Let p(x) be a general joint density for a d-
dimensional autoregressive random variable, i.e. takes on
the form

o(x) = p(xg|lrg—1,...,21)...p(x1).

Then there exists a set of PNNs {Fy. }_, that induce a pe
such that for any € > 0,

o () — p(z)|[1 <e.

Empirical Results

NITS achieves state-of-the-art performance on density estimation tasks on
tabular data, among normalizing flow-based density estimators.

MODEL POWER GAS HEPMASS  MINIBOONE BSDS300
MAF 0.30£0.01 9.594+0.02 -17.39+0.02 -11.68+0.44 156.3640.28
TAN 0.48 +£0.01 11.194£0.02 -15.12+0.02 -11.014+0.48 157.03 4 0.07
NAF 0.62+0.02 11.91+0.13 -15.09+0.40 -8.86+0.15 157.73 4+ 0.04
B-NAF 0.61 +£0.01 12.06+0.02 -14.71+0.02 -8.9540.07 157.36 %+ 0.03
FFJORD 0.46 +£0.01 8.594+0.12 -14.92+0.08 -10.434+0.04 157.4040.19
SOS 0.60+0.01 11.99+0.41 -15.15+0.10 -8.90+0.11 157.48 + 0.41
NSF 0.66+0.01 13.094+0.02 -14.014+0.03 -9.22+0.48 157.31 +0.28
REALNVP 0.17+0.01 8.334+0.14 -18.71+0.02 -13.844+0.52 153.2841.78
MADE MoG 0.40 £ 0.01 8.4740.02 -15.15+£0.02 -12.274+0.47 153.71 +0.28
NITS-MLP (OURS)  0.66 +0.01 13.20 +0.01 -12.93 +0.02 -10.8540.02 155.91 4 0.21
NITS-CONYV (OURS) i i i 163.35 + 0.22

MODEL CIFAR-10
PIXEL CNN 3.14
GATED PIXEL CNN 3.03
Row PIXEL RNN 3.00
PIXEL CNN++ 2.92
IMAGE TRANSFORMER 2.90
PIXELSNAIL 2.85
DISCRETE NITS-CONYV (OURS) 2.94
REALNVP 3.49
GLOW 3.35
FLOW++ 3.08
NITS-CONYV (OURS) 2.97

NITS also performs favorably in a generative modeling setting with images, when
compared against normalizing flow-based models and autoregressive models.

Figure 2. Randomly generated images from DISCRETE NITS-
CONYV (top left) and NITS-CONYV (top right). Compare with
competing discretized and continuous density models, Pixel CNN
(bottom left) and Flow++ (bottom right), respectively.




