# Neural Inverse Transform Sampler

Henry Li, Yuval Kluger

Yale University

#### **Density Estimation**

# **Density Estimation**





### **Density Estimation**











$$p(x = ) \propto$$

f(x,  $\theta$ )



$$p(x = ) \propto$$

 $f(x, \theta)$ 

 $\mathbf{p}(x) \ge 0 \quad x \in A$ 

#### Positivity

Easy



$$p(x = ) \propto$$

 $f(x, \theta)$ 

 $\mathbf{p}(x) \ge 0 \quad x \in A$ 

 $\int_{A} \mathbf{p}(x) dx = 1$ 

#### Positivity

Easy

Integration to Unity

General case: NP Hard!

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx}f(x)$$
 for all  $x \in A$ .

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx}f(x)$$
 for all  $x \in A$ .

Then, if  $A \in [a, b]$ ,

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx}f(x)$$
 for all  $x \in A$ .

Then, if  $A \in [a, b]$ ,

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$



Fundamental Theorem of Calculus. Let F be such that

$$F(x) = \frac{d}{dx}f(x)$$
 for all  $x \in A$ .

Then, if  $A \in [a, b]$ ,

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$



#### Integration Trick



 $\mathbf{F}(\mathbf{x}, \theta)$ 

$$\int_{a}^{b} \mathbf{p}(x) dx = \int_{a}^{b} \frac{F'(x)}{F(b) - f(a)}$$





$$\int_{a}^{b} \mathbf{p}(x) dx = \int_{a}^{b} \frac{F'(x)}{F(b) - f(a)}$$



(Inverse Transform Method.) Two step process:

1. draw 
$$z \sim \text{Unif}[0, 1]$$

2. compute  $x = \mathsf{cdf}^{-1}(z)$ 

#### Extension To Higher Dimensions

**Lemma 3.** (*Gradient Theorem*) Let  $F : \mathbb{R}^n \to \mathbb{R}$  be a continuously differentiable function and  $\varphi : [a,b] \to \mathbb{R}^n$  be a curve in  $\mathbb{R}^n$ , where  $a, b \in \mathbb{R}$  and  $\varphi(a), \varphi(b)$  are the endpoints of the curve. Then

$$\int_{\varphi[a,b]} \nabla F \cdot dr = F(\varphi(b)) - F(\varphi(a)).$$
(12)

#### Neural Inverse Transform Sampler



 $\mathbf{x} = \mathbf{A}$   $\mathbf{x} = \mathbf{B}$ 

*Table 2.* Test log likelihood for UCI datasets and BSDS300, with error bars corresponding to two standard deviations. The table is split into two halves: the upper half denotes flow-based models, and the lower half denotes autoregressive continuous density models. NITS-CONV is only applied to BSDS300, as the convolutional architecture is only readily applicable to images.

| MODEL            | POWER                             | GAS                                | HEPMASS                             | MINIBOONE                          | BSDS300                             |
|------------------|-----------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|
| MAF              | $0.30\pm0.01$                     | $9.59\pm0.02$                      | $-17.39\pm0.02$                     | $-11.68 \pm 0.44$                  | $156.36\pm0.28$                     |
| TAN              | $0.48\pm0.01$                     | $11.19\pm0.02$                     | $-15.12\pm0.02$                     | $-11.01\pm0.48$                    | $157.03\pm0.07$                     |
| NAF              | $0.62\pm0.02$                     | $11.91\pm0.13$                     | $-15.09\pm0.40$                     | $\textbf{-8.86} \pm \textbf{0.15}$ | $157.73\pm0.04$                     |
| B-NAF            | $0.61\pm0.01$                     | $12.06\pm0.02$                     | $-14.71\pm0.02$                     | $-8.95\pm0.07$                     | $157.36\pm0.03$                     |
| FFJORD           | $0.46\pm0.01$                     | $8.59\pm0.12$                      | $-14.92\pm0.08$                     | $-10.43\pm0.04$                    | $157.40\pm0.19$                     |
| SOS              | $0.60\pm0.01$                     | $11.99\pm0.41$                     | $-15.15\pm0.10$                     | $-8.90\pm0.11$                     | $157.48\pm0.41$                     |
| NSF              | $\textbf{0.66} \pm \textbf{0.01}$ | $13.09\pm0.02$                     | $-14.01\pm0.03$                     | $-9.22\pm0.48$                     | $157.31\pm0.28$                     |
| REALNVP          | $0.17\pm0.01$                     | $8.33\pm0.14$                      | $-18.71\pm0.02$                     | $-13.84\pm0.52$                    | $153.28\pm1.78$                     |
| MADE MoG         | $0.40\pm0.01$                     | $8.47\pm0.02$                      | $-15.15\pm0.02$                     | $-12.27\pm0.47$                    | $153.71\pm0.28$                     |
| NITS-MLP (OURS)  | $\textbf{0.66} \pm \textbf{0.01}$ | $\textbf{13.20} \pm \textbf{0.01}$ | $\textbf{-12.93} \pm \textbf{0.02}$ | $-10.85\pm0.02$                    | $155.91\pm0.21$                     |
| NITS-CONV (OURS) | -                                 | -                                  | -                                   | -                                  | $\textbf{163.35} \pm \textbf{0.22}$ |

*Table 2.* Test log likelihood for UCI datasets and BSDS300, with error bars corresponding to two standard deviations. The table is split into two halves: the upper half denotes flow-based models, and the lower half denotes autoregressive continuous density models. NITS-CONV is only applied to BSDS300, as the convolutional architecture is only readily applicable to images.

| MODEL            | POWER                             | GAS                                | HEPMASS                             | MINIBOONE                          | BSDS300                             |
|------------------|-----------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|
| MAF              | $0.30\pm0.01$                     | $9.59\pm0.02$                      | $-17.39\pm0.02$                     | $-11.68\pm0.44$                    | $156.36\pm0.28$                     |
| TAN              | $0.48\pm0.01$                     | $11.19\pm0.02$                     | $-15.12\pm0.02$                     | $\textbf{-11.01} \pm 0.48$         | $157.03\pm0.07$                     |
| NAF              | $0.62\pm0.02$                     | $11.91\pm0.13$                     | $-15.09\pm0.40$                     | $\textbf{-8.86} \pm \textbf{0.15}$ | $157.73\pm0.04$                     |
| B-NAF            | $0.61\pm0.01$                     | $12.06\pm0.02$                     | $-14.71\pm0.02$                     | $-8.95\pm0.07$                     | $157.36\pm0.03$                     |
| FFJORD           | $0.46\pm0.01$                     | $8.59\pm0.12$                      | $-14.92\pm0.08$                     | $-10.43\pm0.04$                    | $157.40\pm0.19$                     |
| SOS              | $0.60\pm0.01$                     | $11.99\pm0.41$                     | $-15.15\pm0.10$                     | $-8.90\pm0.11$                     | $157.48\pm0.41$                     |
| NSF              | $\textbf{0.66} \pm \textbf{0.01}$ | $13.09\pm0.02$                     | $-14.01\pm0.03$                     | $-9.22\pm0.48$                     | $157.31\pm0.28$                     |
| REALNVP          | $0.17\pm0.01$                     | $8.33\pm0.14$                      | $-18.71\pm0.02$                     | $\textbf{-13.84} \pm 0.52$         | $153.28\pm1.78$                     |
| MADE MoG         | $0.40\pm0.01$                     | $8.47\pm0.02$                      | $-15.15 \pm 0.02$                   | $-12.27 \pm 0.47$                  | $153.71 \pm 0.28$                   |
| NITS-MLP (OURS)  | $\textbf{0.66} \pm \textbf{0.01}$ | $\textbf{13.20} \pm \textbf{0.01}$ | $\textbf{-12.93} \pm \textbf{0.02}$ | $-10.85\pm0.02$                    | $155.91\pm0.21$                     |
| NITS-CONV (OURS) | -                                 | -                                  | -                                   | -                                  | $\textbf{163.35} \pm \textbf{0.22}$ |

*Table 1.* Negative log likelihood (in bits/dim) for CIFAR-10. The table is split into halves, with discretized density models above and continuous density models below. We obtain competitive results among both types of models.

| MODEL                     | CIFAR-10 |
|---------------------------|----------|
| PIXEL CNN                 | 3.14     |
| GATED PIXEL CNN           | 3.03     |
| ROW PIXEL RNN             | 3.00     |
| PIXEL CNN++               | 2.92     |
| IMAGE TRANSFORMER         | 2.90     |
| PIXELSNAIL                | 2.85     |
| DISCRETE NITS-CONV (OURS) | 2.94     |
| REALNVP                   | 3.49     |
| GLOW                      | 3.35     |
| FLOW++                    | 3.08     |
| NITS-CONV (OURS)          | 2.97     |



*Figure 2.* Randomly generated images from DISCRETE NITS-CONV (top left) and NITS-CONV (top right). Compare with competing discretized and continuous density models, Pixel CNN (bottom left) and Flow++ (bottom right), respectively.

*Table 1.* Negative log likelihood (in bits/dim) for CIFAR-10. The table is split into halves, with discretized density models above and continuous density models below. We obtain competitive results among both types of models.

| MODEL                     | CIFAR-10 |
|---------------------------|----------|
| PIXEL CNN                 | 3.14     |
| GATED PIXEL CNN           | 3.03     |
| ROW PIXEL RNN             | 3.00     |
| PIXEL CNN++               | 2.92     |
| IMAGE TRANSFORMER         | 2.90     |
| PIXELSNAIL                | 2.85     |
| DISCRETE NITS-CONV (OURS) | 2.94     |
| REALNVP                   | 3.49     |
| GLOW                      | 3.35     |
| FLOW++                    | 3.08     |
| NITS-CONV (OURS)          | 2.97     |



*Figure 2.* Randomly generated images from DISCRETE NITS-CONV (top left) and NITS-CONV (top right). Compare with competing discretized and continuous density models, Pixel CNN (bottom left) and Flow++ (bottom right), respectively.

#### In Summary: Integration Trick



#### In Summary: Inverse Transform Method

# 1. draw $z \sim \text{Unif}[0, 1]$

2. compute 
$$x = \mathsf{cdf}^{-1}(z)$$