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Abstract

Large-scale generative models have shown impressive image-generation capa-
bilities, propelled by massive data. However, this often inadvertently leads to
the generation of harmful or inappropriate content and raises copyright concerns.
Driven by these concerns, machine unlearning has become crucial to effectively
purge undesirable knowledge from models. While existing literature has studied
various unlearning techniques, these often suffer from either the quality of un-
learning or the degradation in text-image alignment after unlearning due to the
competitive nature of these objectives. To address these challenges, we first pro-
pose a framework that seeks an optimal model update at each unlearning iteration,
ensuring monotonic improvement on both objectives and further derive the char-
acterization of such an update. In addition, we design procedures to strategically
diversify the unlearning and remaining datasets to boost performance improvement.
Our evaluation demonstrates that our method effectively removes diverse target
classes from recent diffusion-based generative models and concepts from stable
diffusion models, while maintaining close alignment with the models’ original
trained states, thus outperforming state-of-the-art baselines.

1 Introduction

Large-scale text-to-image generative models have recently gained considerable attention for their
impressive image generation capabilities. Despite being at the height of their popularity, these models,
trained on vast amounts of public data, inevitably face concerns related to privacy, harmful content
generation, and copyright infringement. More specifically, requests for data deletion due to the
right to be forgotten and lawsuits over copyrights have become crucial considerations for model
developers. Although exact machine unlearning—retraining the model by excluding target data—is a
direct solution, its computational challenge has driven continued research on approximate machine
unlearning.

To address this challenge, recent studies [Fan et al., 2023, Gandikota et al., 2023, Heng and Soh, 2024],
have introduced approximate unlearning techniques aimed at boosting efficiency while preserving
effectiveness. These approaches have demonstrated promising results in managing the trade-off
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Figure 1: Generated images using SalUn [Fan et al., 2023], ESD [Gandikota et al., 2023], and Ours
after unlearning given the condition. Each row indicates different unlearning tasks: nudity removal,
and Van Gogh style removal. Generated images from our approach and SD [Rombach et al., 2022] are
well-aligned with the prompt, whereas SalUn and ESD fail to generate semantically correct images
given the condition. On average, across 100 different prompts, SalUn shows the lowest clip alignment
scores (0.305 for nudity removal and 0.280 for Van Gogh style removal), followed by ESD (0.329
and 0.330, respectively). Our approach achieves scores of 0.350 and 0.352 for these tasks, closely
matching the original SD scores of 0.352 and 0.348.

between effective concept removal and the potential degradation of generated image quality, typically
assessed using the Fréchet Inception Distance. However, these studies generally overlook the impact
of unlearning on image-text alignment, which pertains to the semantic accuracy of the image generated
based on the accompanying text [Lee et al., 2024]. Pretrained generative models generally show high
alignment scores. Interestingly, as illustrated in Figure 1, we observed that state-of-the-art techniques
often fail to achieve comparable text-image alignment scores after unlearning, thereby compromising
their practical usage.

We attribute the failure of existing techniques to maintain text-image alignment to two primary
factors. Firstly, the unlearning objective often conflicts with the goal of maintaining low loss on the
retained data, illustrating the competitive nature of these two objectives. Traditionally, approaches to
optimizing these objectives have simply aggregated the gradients from both; however, this method
of updating the model typically advances one objective at the expense of the other. Hence, while
they may effectively remove certain images, it does so at the cost of reducing alignment in others.
Secondly, current methods often use a uniform approach to assemble the dataset for optimizing
towards the goal of minimizing loss on the remaining data. For example, in Fan et al. [2023], this
dataset is composed of images generated from a single prompt associated with the concept to be
removed. This lack of diversity in the dataset can lead to overfitting, which in turn hampers the
text-image alignment.

To address these issues, we propose a principled framework designed to optimally balance the
objectives of unlearning the target data and maintaining performance on the remaining data at
each update iteration. Specifically, we introduce a concept of restricted gradient, which allows
for the optimization of both objectives while ensuring monotonic improvements. Furthermore,
we have developed a deliberate procedure to enhance data diversity, preventing the model from
overfitting to the limited samples in the remaining dataset. To the best of our knowledge, the strategic
design of the forgetting target and remaining sets has not been extensively explored in the existing
machine unlearning literature. In our evaluation, we demonstrate the improvement in both forgetting
quality and alignment on the remaining data, compared to baselines. Our evaluation in nudity removal
demonstrates that our method effectively reduces the number of detected body parts to zero, compared
to 598 with the baseline stable diffusion (SD) [Rombach et al., 2022], 48 with erased stable diffusion
(ESD-u), and 3 with saliency map-based unlearning (SalUn) [Fan et al., 2023]. Particularly, while
achieving this effective erasing performance, our method reduces the alignment gap to SD by 11x
compared to ESD-u and by 20x compared to SalUn on the retained test set.
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2 Related Work

2.1 Machine Unlearning

Machine unlearning has primarily been propelled by the "Right to be Forgotten" (RTBF), which
upholds the right of users to request the deletion of their data. Given that large-scale models are
often trained on web-scraped public data, this becomes a critical consideration for model developers
to avoid the need for retraining models with each individual request. In addition to RTBF, recent
concerns related to copyrights and harmful content generation further underscore the necessity and
importance of in-depth research in machine unlearning. The principal challenge in this field lies
in effectively erasing the target concept from pre-trained models while maintaining performance
on other data. Recent studies have explored various approaches to unlearning, including the exact
unlearning method [Bourtoule et al., 2021] and approximate methods such as using negative gradients,
fine-tuning without the forget data, editing the entire parameter space of the model [Golatkar et al.,
2020]. To encourage the targeted impact in the parameter space, [Golatkar et al., 2020, Foster
et al., 2024] proposed leveraging the Fisher information matrix, and [Fan et al., 2023] leveraged
a gradient-based weight saliency map to identify crucial neurons, thus minimizing the impact on
remaining neurons. Furthermore, data-influence-based debiasing and unlearning have also been
proposed [Chen et al., 2024, Bae et al., 2023]. Another line of work includes the differential privacy
to [Guo et al., 2019, Chien et al., 2024] to ensure that the model’s behavior remains indistinguishable
between the retrained and unlearned models.

2.2 Machine Unlearning in Diffusion Models

Recent advancements in text-conditioned generative models [Ho and Salimans, 2022, Rombach et al.,
2022], trained on extensive web-scraped datasets like LAION-5B [Schuhmann et al., 2022], have
raised significant concerns about the generation of harmful content and copyright violations. A series
of studies have addressed the challenge of machine unlearning in diffusion models [Heng and Soh,
2024, Gandikota et al., 2023, Zhang et al., 2023, Fan et al., 2023]. One approach [Heng and Soh, 2024]
interprets machine unlearning as a continual learning problem, showing effective removal results
in classification tasks by employing Bayesian approaches to continual learning [Kirkpatrick et al.,
2017], which enhance unlearning quality while maintaining model performance using generative
reply [Shin et al., 2017]. However, this approach falls short in removing concepts such as "nudity"
compared to other methods [Gandikota et al., 2023]. Another proposed method [Gandikota et al.,
2023] guides the pre-trained model toward a prior distribution for the targeted concept but struggles
to preserve performance. The most recent work [Fan et al., 2023] proposes selectively damaging
neurons based on a saliency map and random labeling techniques, although this method tends to
overlook the quality of the remaining set, focusing on improving the forgetting quality, which does
not fully address the primary challenges in the machine unlearning community. Although [Bae et al.,
2023] presents a similar multi-task learning framework for variational autoencoders, their work does
not show the optimality of their solution, and their experiments mainly focus on small-scale models,
due to the computational expense associated with influence functions.

3 Our Approach

The goal of machine unlearning is to remove the influence of specific data points from a pre-trained
model without requiring a complete retraining of the model from scratch while maintaining the
model’s utility on the remaining data. We will call the set of data points to be removed as the forgetting
dataset. To set up the notations, let D denote the training set and Df ⊂ D be the forgetting dataset.
We will use Dr = D\Df to denote the remaining dataset. Our approach only assumes access to some
representative points for Df and Dr. As discussed later, depending on specific applications, these data
points can be either directly sampled from Df and Dr or generated based on the high-level concept
of Df to be removed. With a slight abuse of notation, we will use Dr and Df to also denote the
actual representative samples used to operationalize our proposed approach. Furthermore, we denote
the model parameter by θ. Let l be a proper learning loss function. The loss of remaining data and
that of forgettng data are represented by Lr(θ) :=

∑
z∈Dr

l(θ, z) and Lf (θ) := −λ
∑

z∈Df
l(θ, z),

respectively, where λ is a weight adjusting the importance of forgetting loss relative to the remaining
data loss. We term Lr and Lf remaining loss and forgetting loss, respectively. We note that in the

3



context of diffusion models, loss function l is defined as l = Et,x0,ϵ∼N (0,1)

[
∥ϵ− eθ(xt, t)∥2

]
, where

xt is a noisy version of x0 generated by adding Gaussian noise to the clean image x0 ∼ pdata(x)
at time step t with a noise scheduler, and eθ(xt, t) is the model’s estimate of the added noise ϵ at
time t [Xu et al., 2023, Ho et al., 2020]. For text-to-image generative models, the loss function l
is specified as l = Et,q0,c,ϵ

[
∥ϵ− ϵθ(qt, t, η)∥2

]
, where q0 is an encoded latent q0 = E(x0) with

encoder E , and qt is a noisy latent at time step t. The noise prediction ϵθ(qt, t, η) is conditioned on
the timestep t and a text η.

Optimizing the Update. Similar to existing work Fan et al. [2023], our approach also applies
iterative updates to θ0 to remove the influence of Df while maintaining performance on Dr, which
can be formulated by minθ Lr(θ) + Lf (θ). A simple approach to optimize this objective, often
adopted by existing work, is to calculate the gradient ∇Lr(θ) +∇Lf (θ) and use it to update the
model parameters at each iteration. However, empirically, we observe that the two gradients usually
conflict with each other, i.e., the decrease of one objective is at the cost of increasing the other;
therefore, in practice, this approach yields a significant tradeoff between forgetting strength and model
utility on the remaining data. In this work, we aim to present a principled approach to designing
the update direction at each iteration that more effectively handles the tradeoff between forgetting
strength and model utility on the remaining data. Our key idea is to identify a direction that achieves
a monotonic decrease of both objectives.

To describe our algorithm, we briefly review the directional derivative.
Definition 1 (Directional Derivative). Recall that the directional derivative of a function f is written
as

Dvf(x) = lim
h→0

f(x+ hv)

h
. (1)

The directional derivative has a very interesting property, in that its maximizer is explicitly related to
the gradient ∇f(x).
Theorem 2 (Maximizer of the directional derivative is the gradient). Let f be a function on x.
Then the maximum value of the directional derivative of f at x is |∇f(x)| the norm of its gradient.
Moreover, the direction v is the gradient itself, i.e.,

max
v

Dvf = ∇f(x). (2)

In unlearning, we are specifically interested in the gradient of two losses, the forgetting loss Lf and
the remaining loss Lr. Moreover, we seek gradient directions that simultaneously improve on both
losses. This motivates the restricted gradient, which ensures the monotonic decreases of the two
losses.
Definition 3. The restricted gradient of a pair of objectives Lα, Lβ is the direction v at x that
satisfies

max
v

Dv(Lα + Lβ)(x) s.t. Lα(x) ≥ Lα(x+ v) and Lβ(x) ≥ Lβ(x+ v).

Intuitively, the restricted gradient is the ideal direction for unlearning. We would like to optimize
the joint loss L = Lr + Lf subject to the condition that at every parameter update step, Lr and Lf

experience monotonic improvement. This is precisely the step prescribed by the negative restricted
gradient. Since the learning rates used in updating the parameters in the unlearning process are
typically quite small, we can approximate the change in the loss at each iteration via a simple
first-order Taylor expansion. We now show that in this case, the restricted gradient takes a simple
form.
Theorem 4 (Characterizing the restricted gradient under linear approximation.). Given any θ, assume
that Lr(θ + δ)− Lr(θ) ≈ δ · ∇Lr and Lf (θ + δ)− Lf (θ) ≈ δ · ∇Lf for any δ with a sufficiently
small norm. The restricted gradient is precisely described by

δ ∝ argmin
v

Dv(Lf + Lr)(θ) = δ∗f + δ∗r , (3)

where δ∗f and δ∗r are written as

δ∗f = ∇Lf − ∇Lf · ∇Lr

∥∇Lr∥2
∇Lr, δ∗r = ∇Lr −

∇Lf · ∇Lr

∥∇Lf∥2
∇Lf , (4)

when we have conflicting unconstrained gradient terms, i.e. ∇Lf · ∇Lr = ∇Lf · ∇Lr < 0.
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Figure 2: Visualization of the update. We show the
update direction (gray) obtained by (a) directly
summing up the two gradients and (b) our re-
stricted gradient.

The theorem presented demonstrates that the re-
stricted gradient is determined by aggregating
the modifications from ∇Lf and ∇Lr. This
modification process involves projecting ∇Lf

onto the normal vector of ∇Lr, yielding δ∗f , and
similarly projecting ∇Lr onto the normal vector
of ∇Lf , resulting in δ∗r . The optimal update, as
derived in Theorem 4, is illustrated in Figure 2.
Notably, when ∇Lf and ∇Lr have equal norms,
the restricted gradient matches the direct sum-
mation of the two original gradients, namely,
∇Lf +∇Lr. However, it is more common for
the norm of one gradient to dominate the other,
in which case the restricted gradient provides a
more balanced update compared to direct aggre-
gation.

Remark 1. We wish to highlight an intriguing
link between the gradient aggregation mechanism presented in Theorem 4 and an existing method
to address gradient conflicts across different tasks in multi-task learning. This restricted gradient
coincides exactly with the gradient surgery procedure introduced in Yu et al. [2020]. While their
original paper presented the procedure from an intuitive perspective, our work offers an alternative
viewpoint and rigorously characterizes the objective function that the gradient surgery procedure
optimizes.

Diversify Dr. Since D \ Df is usually of enormous scale, it is infeasible to incorporate all of
them into the remaining dataset Dr for running the optimization. In practice, one can only sample a
subset of points to from Dr. In our experiments, we find that the diversity of Dr plays an important
role in maintaining the model performance on the remaining dataset, as seen in Section 4.2. We
propose procedures for forming a diverse Dr. In case where the text space of the model is a limited
set of class labels, such as for the diffusion models trained on the CIFAR-10 dataset, we adopt a
simple procedure of maintaining the equal number of samples for each class in Dr. Our ablation
studies in Section 4.4 show that this is more effective in maintaining model performance on the
remaining dataset than more sophisticated procedures, such as selecting the most similar examples
to the forgetting samples. The intuitive reason is that reminding the model of as many fragments as
possible related to the remaining set during each forgetting step is crucial. By doing so, it leads to
finding a representative restricted descent gradient, which helps the model to precisely erase the forget
data while maintaining a state comparable to the original model. When the text input is unconstrained,
such as in the stable diffusion model setting, to strategically design diverse information, we propose
the following procedure to generate Dr based on the concept to be forgotten, denoted by c. We first
generate diverse text prompts related to concept c using a large language model (LLM), denoted by
Yc. We provide examples of our prompt to an LLM in Appendix D. Then, we prompt the model to
remove any word related to c, giving Y . Then, we pass Yc and Y to the target diffusion model to
generate corresponding images, denoted by Xc and X , respectively. Finally, we can represent Df

and Dr as Df = {(x, y) | x ∈ Xc, y ∈ Yc} and Dr = {(x, y) | x ∈ X , y ∈ Y} respectively.

4 Experiment

In this study, we aim to address the crucial concerns of harmful content generation and copyright
infringement in text-to-image generative models by focusing on the removal of target classes or
concepts. Our approach is referred to as RG when applied only with the restricted gradient, and
RGD when data diversity is incorporated. We incorporate diverse metrics to fairly assess the quality
of forgetting performance and model utility. We begin by examining class-wise forgetting with
CIFAR10-diffusion-based generative models to demonstrate the applicability of our method in a
class-conditional setting (Section 4.2). We then explore the effectiveness of our method in nudity
and art style removal (Section 4.3) to properly address the raised concerns. We further analyze the
impact of data diversity (Section 4.4) as well as the sensitivity of our method to hyperparameter
settings to study the stability of our approach (Section 4.4).
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4.1 Experiment Setup

For our CIFAR-10 experiments, we leverage the EDM framework [Karras et al., 2022], which intro-
duces some modeling improvements including a nonlinear sampling schedule, direct x0-prediction,
and a second-order Heun solver, achieving the state-of-the-art FID on CIFAR-10. For stable diffusion,
we utilize the pre-trained Stable Diffusion version 1.4, following prior works. We have two param-
eters to be considered for both cases: 1) the weight of the gradient descent direction, with respect
to the ascent direction, denoted as λ, and 2) the loss truncation value, α, which prevents the model
from infinitely maximizing the loss during unlearning. This can be interpreted as controlling the
number of iterations. Details about the hyperparameters we used for each experiment are provided in
Appendix C. Regarding the size of the remaining dataset, we sample 1% of data from each class to
build ||Dr|| = 450 for CIFAR-10, while for stable diffusion experiments, we utilize ||Dr|| = 800,
considering the impracticality of accessing all remaining samples.

As our baselines for CIFAR-10 experiments, we consider Finetune [Warnecke et al., 2021], gradient
ascent and descent [Yao et al., 2023], referred to as GradDiff, and SalUn [Fan et al., 2023]. For
concept removal, our baselines include the pretrained diffusion model SD [Rombach et al., 2022],
erased stable diffusion ESD [Gandikota et al., 2023], and SalUn [Fan et al., 2023]. To fairly compare,
We further consider the variants of ESD, depending on the unlearning task. We note that we do not
consider the baseline by [Heng and Soh, 2024] due to its demonstrated limited performance in nudity
removal, compared to ESD.

To evaluate the forgetting quality and the model utility on the remaining set, we consider 1) unlearning
accuracy UA, which is calculated by 1-accuracy of the target class, 2) remaining accuracy RA, which
is the accuracy of the remaining classes, and 3) Frechet Inception Distance FID for CIFAR-10. We
use RA as a metric to measure model alignment after unlearning. We utilize Inception Net as a trained
classifier for RA and UA. To measure FID, we generate 50K images. To quantitatively assess the
effectiveness of concept forgetting, we utilize Nudenet [Bedapudi, 2019] to detect exposed body parts
in generated images, prompted by I2P [Schramowski et al., 2023]. We filtered out 4,703 prompts with
a provided nudity ratio greater than zero, resulting in a final set of 853 prompts ( C). Importantly, we
calculate the CLIP [Cherti et al., 2023] alignment scores AS between each prompt and the generated
image after unlearning to measure the semantic correctness, following [Lee et al., 2024].

4.2 Target Class Removal from Diffusion Models

Table 1: Quantitative evaluation of unlearning methods on
CIFAR-10 diffusion-based generative models. The metrics
are averaged across all 10 classes.

Unlearning Method Class-wise Forgetting

UA ↑ RA ↑ FID ↓
Finetune 0.697±0.0241 0.918±0.004 4.2521±0.4817

SalUn 0.710±0.0324 0.596±0.0983 11.927±3.6967

GradDiff 0.885±0.2877 0.876±0.0164 12.685±2.9935

RG (Ours) 0.894±0.0272 0.888±0.0042 9.11±1.3833

RGD (Ours) 0.899±0.0247 0.912±0.0103 6.429±0.9487

We present the CIFAR-10 experiment
results in Table 1. To fairly com-
pare, we use the same remaining
dataset for other baselines. Our find-
ing first indicates that Finetune cannot
achieve promising unlearning perfor-
mance with the limited amount of Dr

or it requires more iterations to take
advantage of catastrophic forgetting,
which results in high computational
cost. Secondly, we observe that SalUn
has low RA, compared to other base-
lines even with their comparable FID
performance. We hypothesize that ran-
dom labeling introduces confusion in
the feature space, negatively impacting the accurate generation of classes and resulting in degraded
classification performance. It may perform well when a large amount of the retained set is available,
as it may prevent remaining classes from being perturbed by random labeling. Moreover, given the
inherent limitations of naive gradient ascent for computing the saliency map, it is challenging to
expect the saliency map to select only the neurons related to specific classes or concepts. For instance,
if we perform gradient ascent in the dog class, related features, such as those of the cat class, are
affected unless we restrict our selection to the neurons in the last classification layer. On the other
hand, GradDiff falls short of delivering promising FID as well as RA.
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Figure 3: Generated images using SD, SalUn, ESD-u, and
RGD(Ours). Each row indicates generated images with dif-
ferent prompts including nudity-related I2P prompts and
samples from Df . Each column shows the generated images
from different unlearning methods.

Figure 4: The nudity detection results
by Nudenet, following prior works
[Fan et al., 2023, Gandikota et al.,
2023]. The Y-axis shows the exposed
body part in the generated images,
given the prompt, and the X-axis de-
notes the number of images generated
by each unlearning method and SD.
We exclude bars from the plot if the
corresponding value is zero (i.e., not
detected).

The Impact of Restricted Gradient and Data Diversity Our observations are as follows. 1) RG
outperforms Gradiff and other baselines by decreasing FID and increasing RA and UA, indicating
that the restricted gradient leads to an optimally balanced solution for both tasks. 2) RGD shows
improvements over RG, suggesting that data diversification, in conjunction with the restricted gradient,
further enhances performance in terms of RA and FID. We vary the hyperparameters and provide the
results in section 4.4.

4.3 Target Concept Removal from Diffusion Models

Target concept removal has primarily been explored in the diffusion model unlearning literature,
given the importance of mitigating harmful content generation and addressing copyright concerns.
These methods have demonstrated some potential in removing nudity or art styles, but they often
compromise the model alignment after unlearning.

Nudity Removal. We observe that Salun tends to generate samples that are overfitted to the
remaining dataset. Although Salun shows promising performance in nudity removal—detecting fewer
exposed body parts compared to SD and ESD-u, as shown in Figure 4—this unlearning comes at
the expense of diversity. In particular, SalUn often generates semantically similar images (e.g., men,
wall backgrounds) given the prompts related to both forgetting concepts (Figure 3) and remaining
data (Figure 1). The results from Table 4 further substantiate our observation. As shown in the
table, Salun shows the lowest AS after unlearning. This raises the question of whether the observed
forgetting performance is truly due to the unlearning method or if it is a result of overfitting. We
hypothesize that the selected neurons may not exclusively influence the forget data, and their defined
forget and remaining datasets are highly uniform. In the case of ESD, it often fails to remove the
nudity concept from unlearned models, as shown in Figure 4. We also evaluate ESD-u, and observe
the nudity removal performance between ESD and ESD-u are quite similar although it achieves better
AS than SalUn. They suggest using "nudity" as a prompt for unlearning, but it might be difficult to
reflect the entire semantic space related to the concept of "nudity," given that we can describe nudity
in many different ways using paraphrasing.
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Table 2: Nudity and artist removal: we calculate the clip alignment
score (AS), following Lee et al. [2024], to measure the model alignment
on the remaining set after unlearning.

AS (∆)* Nudity Removal Artist Removal

Dr,train Dr,test Dr,train Dr,test

SD 0.357 0.352 0.349 0.348
ESD** 0.327 (0.030) 0.329 (0.023) 0.300 (0.049) 0.298 (0.050)

ESD-u** 0.327 (0.03) 0.329 (0.023) - -
ESD-x** - - 0.333 (0.016) 0.330 (0.018)
SalUn 0.305 (0.052) 0.312 (0.040) 0.279 (0.070) 0.280 (0.068)

RG (Ours) 0.342 (0.015) 0.348 (0.004) 0.334 (0.015) 0.333 (0.015)
RGD (Ours) 0.354 (0.003) 0.350 (0.002) 0.355 (-0.006) 0.352 (-0.004)

* The values in parentheses, ∆, refer to the gap between the original SD and the
unlearned model with each method.

** ESD, ESD-u, and ESD-x refer to training on full parameters, non-cross-
attention weights, and cross-attention weights, respectively.

Figure 5: Art style removal. Each row represents different prompts
used to evaluate the alignment and each column indicates generated
images from different unlearning methods.

Our method outperforms
both state-of-the-art base-
lines in terms of forget qual-
ity (i.e., zero detection of
exposed body part given
I2P prompts as described in
Figure 4) and retain qual-
ity (i.e., high AS presented
in Table 2), effectively miti-
gating the trade-off between
the two tasks. As shown
by the GradDiff-d bar (i.e.,
GradDiff with data diver-
sity) in Figure 4, we ob-
serve that the restricted gra-
dient remains effective in reducing the generation of nudity image and improving the alignment
scores.

Figure 6: We vary the hyperparameters to evaluate
the effectiveness of our method. The first row
indicates the variance with respect to α, while the
second row shows the variance with respect to λ.
The first column presents the UA, while the second
column shows the FID.

Art Style Removal. Similar to nudity removal,
the task of eliminating specific art styles presents
a significant challenge. In order to evaluate
whether the unlearning methods inadvertently
impact other concepts and semantics beyond the
targeted art style, we prompt the model with
other artists’ styles (e.g., Monet, Picasso) while
targeting to remove Vincent van Gogh’s style.
The results of generation examples are shown
in Figure 1 and Figure 5, and the average align-
ment scores are shown in Table 2. It is observed
that SalUn cannot follow the prompt to generate
other artists’ styles and shows a significant drop
in alignment scores (AS) compared with the pre-
trained SD. We also train ESD-x by modifying
the cross-attention weights, which is more suit-
able for erasing artist styles than full-parameter
training (shown as plain ESD without any suf-
fix) as proposed in ESD work. Although ESD-x
performs similarly to RG in terms of alignment
scores, after manual inspection of the generated
images, we find ESD-x sometimes generates im-
ages ignoring the style instructions as presented
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Table 3: Comparison of UA and FID for diversity-controlled experiments in CIFAR-10 diffusion
models. In this context, Case 1 represents a scenario where the remaining set lacks diversity (i.e., it
only includes samples from two closely related classes), while Case 2 includes equal samples from
all classes in each batch iteration. We note that we use the same remaining dataset size between both
cases.

Unlearning Method Case 1 Case 2 ∆ = Case 2 − Case 1

UA↑ FID↓ UA↑ FID↓ UA FID

GradDiff 0.887±0.042 201.24±16.93 0.884±0.029 110.50±28.97 -0.003 -90.74
RG (Ours) 0.891±0.034 168.30±44.09 0.895±0.025 48.05±0.27 +0.004 -120.25

RGD (Ours) 0.914±0.014 140.97±63.38 0.907±0.032 10.88±0.97 -0.007 -130.09

in Figure 1, while RG generates images with
lower quality details like noisy backgrounds but
adheres well to the style instructions. Consequently, after incorporating gradient surgery to prevent
interference between retain and forgot targets, our RGD achieves better image quality and shows the
best alignment score, almost equivalent to the performance of the pre-trained SD.

4.4 Ablation

Ablation in Hyperparameters. As described in Section 4.1, we have two key parameters, λ and α.
Therefore, in this experiment, we vary both parameters to measure the effectiveness of our method
across different hyperparameters. In Figure 6, we consider α = {10−1, 5 × 10−1, no truncation}
and λ = {5, 5.5, 6}. We use UA as an unlearning metric and FID to measure the quality of the
remaining samples. From Figure 6, We observe that RG consistently improves both performances
over GradDiff, indicating the effectiveness of the restricted gradient. If we don’t use the truncation
parameter alpha, as presented in the first row of Figure 6 denoted as no Trunc, RGD outperforms
others by a large margin. We note that UA shows more variance because it is based on the trained
classifier with non-noisy images, and thus for noisy images, it does not guarantee to provide unbiased
classification results.

Table 4: Comparison of alignment
score (AS) between RGD and RG.
RG, in this table, indicates the case
when we have uniform forgetting
and remaining datasets but utilize
the restricted gradient.

AS (∆)* Nudity Removal

Dr,train Dr,test

SD 0.357 0.352
RGD 0.354 (0.003) 0.351 (0.001)

RG 0.330 (0.027) 0.320 (0.032)
* The values in parentheses, ∆, refer

to the gap between the original SD
and the unlearned model with each
method.

Ablation in Diversity. In this ablation study, we aim to con-
trol the diversity level from different angles and examine the
effects of diverse samples more thoroughly. For the CIFAR-10
dataset, to control the level of diversity, we strategically select
two classes that show a large performance drop when we un-
learn the target class (i.e., Case 1 in Table 3). It is based on the
assumption that if we unlearn a target class, the classes corre-
lated to the target class are damaged. As shown in Table 3, the
results demonstrate that the lack of diversity in the remaining
samples increases FID significantly, indicating that we should
design our Dr more carefully. For SD, we follow the design
of Df and Dr as suggested in SalUn to evaluate the forget and
retain qualities without considering data diversity. As shown
in Table 4, RG shows a larger gap from SD compared to RGD.
In sum, from both experiments, we observe the importance of
data diversity in stable diffusion.

5 Conclusion

The current state-of-the-art approaches in diffusion-based gen-
erative models struggle to maintain model alignment after un-
learning. Our contribution lies in introducing a restricted gradient to provide the optimal solution
for the multi-task objective, thereby achieving a balanced solution that provides the monotonic
improvement for each task. Furthermore, we observe the importance of data diversity in unlearning
problems to improve the forgetting and remaining performance respectively, Therefore, we propose
designing the remaining dataset strategically to ensure data diversity. We evaluate our methods on
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CIFAR-10 diffusion models and stable diffusion to assess the effectiveness of removing target classes
or concepts. Our approach outperforms state-of-the-art baselines according to our evaluation metrics.

5.1 Limitation and Broader Impacts

Our solution for machine unlearning in generative models opens new possibilities for further ex-
ploration into data diversity in future research. Specifically, incorporating more representative and
challenging samples for large-scale foundation models presents an intriguing problem to address.
Although we evaluate our method across various hyperparameters, considering the inherent nature of
gradient ascent, balancing these parameters is important, along with the design of diverse datasets.
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A Proof of Theorem 4

To prove this theorem, we establish the following lemma.
Lemma 5 (Projected gradients obtain optimal solution to a constrained objective). Let Lf (θ), and
Lr(θ) be K-Lipschitz smooth negative forget and retain losses respectively. Then, the update
δ∗f = ∇Lf − ∇Lf ·∇Lr

∥∇Lr∥2 ∇Lr optimizes

δ∗f = argmin
||δf ||=η

Lf (θ + δf ) s.t. Lr(θ) ≥ Lr(θ + δf ) (5)

and similarly, δ∗r = ∇Lr − ∇Lf ·∇Lr

∥∇Lf∥2 ∇Lf optimizes

δ∗r = argmin
||δr||=η

Lr(θ + δr) s.t. Lf (θ) ≥ Lf (θ + δr), (6)

for a value η ≪ K when we have conflicting unconstrained gradient terms, i.e. ∇Lf · ∇Lr =
∇Lf · ∇Lr < 0.

Proof of Lemma 5. For δr, δf , both of norm η, we have good approximation by the Taylor expansion
due to the Lipschitz condition on Lf , Lr. Therefore, we have,

Lr(θ + δr)− Lr(θ) ≈ δr · ∇Lr

Lf (θ + δf )− Lf (θ) ≈ δf · ∇Lf

Lf (θ + δr)− Lf (θ) ≈ δr · ∇Lf

Lr(θ + δf )− Lr(θ) ≈ δf · ∇Lr

We can re-express the two objectives as,

argmin
||δf ||=η

δf · ∇Lf s.t. δf · ∇Lr ≤ 0 (7)

argmin
||δr||=η

δr · ∇Lr s.t. δr · ∇Lf ≤ 0. (8)

By the method of Langrangian multipliers, for each objective we create slack variables λf , λr, and
obtain the unconstrained objectives,

argmin
||δf ||=η

δf · ∇Lf + λfδf · ∇Lr = argmin
||δf ||=η

δf · (∇Lf + λf∇Lr)

argmin
||δr||=η

δr · ∇Lr + λrδr · ∇Lf = argmin
||δr||=η

δr · (∇Lr + λr∇Lf )

We first observe since both are now linear objective, that the minima is trivially observed when
δ∗f ∝ −(∇Lf + λf∇Lr), and δ∗r ∝ −(∇Lr + λr∇Lf ). For the rest of this proof, without loss of
generality, suppose η is scaled such that we hold the previous proportionality statements as equalities.

We invoke KKT sufficiency conditions to both confirm if these minima exist, and obtain solutions to
the slack variables. In the case of conflicting gradients, since ∇Lf · ∇Lr < 0, the minimizers of the
unconstrained objectives in Equations 7, 8 are not satisfied within the constraints. Therefore, λf , and
λr do not vanish, and are maximizers of their respective objectives. Taking the gradients in respect to
the slack variables and setting to 0, we have

∇λf

(
δ∗f · (∇Lf + λf∇Lr)

)
= −∇λf

(
δ∗f · δ∗f

)
= −2∇Lr · δ∗f = 0

∇λr
(δ∗r · (∇Lr + λr∇Lf )) = −∇λr

(δ∗r · δ∗r ) = −2∇Lf · δ∗r = 0.

We can solve this in a way that satisfies the objective by requiring δ∗r to be orthogonal to ∇Lf , and δ∗f
to be orthogonal to ∇Lr. In this case, we have λf = −∇Lf ·∇Lr

∥∇Lr∥2 and λr = −∇Lf ·∇Lr

∥∇Lf∥2 as the optima.
We verify that these are maximizers by computing the second derivatives, which are constants at
−2∥∇Lr∥2 and −2∥∇Lf∥2 respectively. Both are strictly negative, confirming the second order
sufficient condition for a maximizer.

Therefore it is precisely the restricted gradient steps, δ∗f = ∇Lf − ∇Lf ·∇Lr

∥∇Lr∥2 ∇Lr and δ∗r = ∇Lr −
∇Lf ·∇Lr

∥∇Lf∥2 ∇Lf , which solve the optimization problems in Equations 5, 6 respectively.
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Proof of Theorem 4. We take the Taylor expansions in respect to v of Lf and Lr around θ. We have
mutatis mutandis for some h ∈ R,

Lf (θ + hv) = Lf (θ) + h∇Lf (θ) · v +O(h2∥v∥2)

It follows that, for v, w, such that w · ∇Lf (θ) = 0,

Dv+wLf (θ) = lim
h→0

Lf (θ + hv + hw)

h

= lim
h→0

Lf (θ) + h∇Lf (θ) · (v +w)

h

= lim
h→0

Lf (θ) + h∇Lf (θ) · v
h

= lim
h→0

Lf (θ + hv)

h
= DvLf (θ).

Now, we observe that we can upper bound the optimization,

min
v

∗ Dv(Lf + Lr)(θ) ≥ min
v

DvLf (θ) s.t. Lr(θ) ≥ Lr(θ + v)

+ min
w

DwLr(θ) s.t. Lf (θ) ≥ Lf (θ +w)

= lim
h→0

min
v

∗ 1

h
Lf (θ + hv) + lim

h→0
min
w

∗ 1

h
Lr(θ + hw).

We use min∗ to signify the presence of constraints as previously defined for the respective expression
to simplify notation. Note, that in each minimization above, one of the constraints is no longer
relevant due to the objective minimizing it implicitly, so we drop it.

We invoke Lemma 5 to solve each minimization problem above, yielding, v∗ ∝ δ∗f = ∇Lf −
∇Lf ·∇Lr

∥∇Lr∥2 ∇Lr, and w∗ ∝ δ∗r = ∇Lr − ∇Lf ·∇Lr

∥∇Lf∥2 ∇Lf . Note that since we are taking the limits as
h → 0, the Taylor expansion in Lemma 5 is exact.

We also have that Dv∗Lf (θ) = Dv∗+w∗Lf (θ) since w∗ · ∇Lf (θ) = 0 (and similarly we have
Dw∗Lr(θ) = Dv∗+w∗Lr(θ)).

Now, altogether we can show,

min
v

∗ Dv(Lf + Lr)(θ) ≥ min
v

∗ DvLf (θ) + min
w

∗ DwLr(θ)

= Dv∗Lf (θ) +Dw∗Lr(θ)

= Dv∗+w∗Lf (θ) +Dv∗+w∗Lr(θ)

= Dv∗+w∗ (Lf (θ) + Lr(θ))

If v∗ + w∗ satisfies the constraints of the original optimization, and bounds the minimizer from
below, this is the optimal solution.

Therefore, we require for both losses,

Lf (θ + v∗ +w∗) ≥ Lf (θ)

Lr(θ + v∗ +w∗) ≥ Lr(θ)

By the constraints of the optimization problem, we know that Lf (θ+v∗) ≥ L(θ), and Lr(θ+w∗) ≥
L(θ). Again, using the Taylor expansion, mutatis mutandis we have,

Lf (θ + v∗ +w∗) = Lf (θ + v∗) +∇Lf (θ + v∗) ·w∗ +O(∥w∗∥2)
≃ Lf (θ + v∗) ≥ Lf (θ).

Therefore, η(δ∗f + δ∗r ), solves the optimization for a small enough constant η ∈ R+, so δ∗f + δ∗r solves
the optimization up to a constant. This completes the proof.
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B Preliminaries

Denoising Diffusion Probabilistic Models Diffusion models consist of a forward diffusion process
and a reverse diffusion process. The forward diffusion process progressively deteriorates an initial
data point x0 ∼ q{x0} by adding Gaussian noise with a variance schedule βt ∈ (0, 1) to generate a
set of noisy latents {x1, x2, ..., xT } with a Markov transition probability:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (9)

q(xt|x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, ᾱt =

t∏
n=1

(1− βj), (10)

where T indicates the maximum time steps. In the reverse process, we aim to predict
the latent representation of the previous time step, which can be written as pθ(xt−1|xt) =
N (xt−1;µθ(xt, t),Σθ(t)). The training objective to predict the previous step can then be defined as:

L = −
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))] (11)

where q(xt−1|xt, x0) = N (xt−1;µq(xt, x0),Σq(t)). Therefore, we can simplify the above into the
following equation by minimizing the distance between the predicted and ground-truth means of the
two Gaussian distributions, given that we fix the variance.

L = Et,x0,ϵ

[
∥ϵ− eθ(xt, t)∥2

]
(12)

where eθ(xt, t) is the model’s estimate of the noise ϵ added into the clean image x0 at time t [Xu
et al., 2023, Ho et al., 2020].

Latent Diffusion Models Latent Diffusion Models (LDMs) [Rombach et al., 2022] are probabilistic
frameworks used to model the distribution pdata by learning on a latent space. Based on the pre-trained
variational autoencoder, LDMs first encode high-dimensional data x0 into a more tractable, low-
dimensional latent representation z0 = E(x0), where E represents an encoder. Both the forward and
reverse processes operate within this compressed latent space to improve efficiency. The objective
can be described as L = Et,z0,c,ϵ

[
∥ϵ− ϵθ(zt, t, c)∥2

]
, where the noise prediction ϵθ(zt, t, c) is

conditioned on the timestep t and a text c. Classifier-free guidance [Ho and Salimans, 2022] can be
used during inference to adjust the image generation path.

C Implementation Details

We present the implementation details of our approach in this section. We conduct our experiments
on 1x Nvidia H100 GPU. To fine-tune with our proposed method takes around 392s for RG and
4851s for RGD.

CIFAR-10 For the CIFAR-10 experiments, We evaluated our method using α = 1e− 1 and λ = 5,
setting the duration to 0.05 in the EDM implementation. We used the same learning rate and optimizer
as provided in the original implementation. We sample 50 per class for generating the remaining
dataset.

Stable Diffusion For the stable diffusion experiments, we employed α = 1.6 and λ = 1.5, utilizing
800 pairs of images and prompts.
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D Dataset Diversification Details

In this section, we present a set of example prompts designed for our Df and Dr models. To generate
these prompts, we leverage the ChatGPT. Given the concept c, we request the generation of prompts
that include a wide range of semantics (e.g., environment, time, mood, actions) to thoroughly describe
the concept c for Df . As explained before, we remove the word related to c to generate Dr. Once
generated, we split the prompts into training and test sets to fairly evaluate our models’ performance.

By diversifying the semantic content of the prompts, we aim to ensure that our models are reminded
of a broad spectrum of contextual variations, thereby enhancing their ability to generalize across
diverse scenarios.

D.1 Nudity Removal

Table 5: Example prompts for Df .

Prompt
P1 A melancholic unclad person painting in a bright, airy studio early evening.

P2 A hopeful undressed person sketching in a bright, airy studio during twilight.

P3 A melancholic unclad person playing guitar in a bright, airy studio during twilight.

P4 A disillusioned nude person painting in an urban park late night.

P5 A excited unclad person shopping in a bright, airy studio early evening.

P6 A excited undressed person painting in a desert early evening.

P7 A excited unclad person shopping in a desert at noon.

P8 A excited naked person sketching in an urban park late night.

P9 A excited undressed person playing guitar in an urban park late night.

P10 A hopeful nude person shopping in an urban park late night.

P11 A excited naked person sketching in an urban park early evening.

P12 A hopeful undressed person shopping in a bright, airy studio late night.

P13 A hopeful naked person shopping in a bright, airy studio during twilight.

P14 A melancholic undressed person shopping in a bright, airy studio early evening.

P15 A disillusioned unclad person shopping in a bright, airy studio at noon.
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Table 6: Example prompts for Dr.

Prompt
P1 A melancholic person painting in a bright, airy studio early evening.

P2 A hopeful person sketching in a bright, airy studio during twilight.

P3 A melancholic person playing guitar in a bright, airy studio during twilight.

P4 A disillusioned person painting in an urban park late night.

P5 A excited person shopping in a bright, airy studio early evening.

P6 A excited person painting in a desert early evening.

P7 A excited person shopping in a desert at noon.

P8 A excited person sketching in an urban park late night.

P9 A excited person playing guitar in an urban park late night.

P10 A hopeful person shopping in an urban park late night.

P11 A excited person sketching in an urban park early evening.

P12 A hopeful person shopping in a bright, airy studio late night.

P13 A hopeful person shopping in a bright, airy studio during twilight.

P14 A melancholic person shopping in a bright, airy studio early evening.

P15 A disillusioned person shopping in a bright, airy studio at noon.

D.2 Art Style Removal

Table 7: Example prompts for Df .

Prompt
P1 A whining dog in a cafe illustrated by Vincent van Gogh.

P2 The style of Vincent van Gogh in a painting of A running dog in the neighborhood.

P3 In Vincent van Gogh’s style, A happy dog behind the bushes.

P4 A trained dog in the neighborhood as seen through Vincent van Gogh’s eyes.

P5 A hungry dog on the couch, as conceived by Vincent van Gogh.

P6 A excited dog at the gate as seen through Vincent van Gogh’s eyes.

P7 In Vincent van Gogh’s style, A sneaky dog along the trail.

P8 In Vincent van Gogh’s characteristic style, A sniffing dog over a fence.

P9 Inspired by Vincent van Gogh, a painting of A scared dog along the trail.

P10 A playful dog at the gate as imagined by Vincent van Gogh.

P11 Vincent van Gogh creates A running dog during a storm in his signature style.

P12 A wet dog at the gate, as conceived by Vincent van Gogh.

P13 A trained dog on the couch interpreted through Vincent van Gogh’s artistry.

P14 Inspired by Vincent van Gogh, a painting of A protective dog across the field.

P15 A wet dog at a park seen through Vincent van Gogh’s artistic perspective.

P16 In the style of Vincent van Gogh, A wet dog at a park.
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Figure 7: SD given the prompts from Dr

Table 8: Example prompts for Dr.

Prompt
P1 In Cawjnj’s characteristic style, A scared dog over a fence.

P2 Kichikscch Ycgn’s portrayal of A happy dog by the fireplace.

P3 The style of Maximilian Vermeer in a painting of A scared dog under a tree.

P4 Maximilian Vermeer creates A scared dog in the neighborhood in his signature style.

P5 Marius Vendrell’s art showing A curious dog at the gate.

P6 A running dog under a tree, as conceived by Wassily Kandinsky.

P7 In Lorenzo di Valli’s style, A swimming dog across the field.

P8 A lazy dog during a storm interpreted through René Magritte’s artistry.

P9 A curious dog on the couch, as conceived by Gustav Klimt.

P10 The style of Fvlgvzswlp Lowlqufgjtl in a painting of A barking dog in the yard.

P11 In Enzo Fiorentino’s characteristic style, A happy dog under a tree.

P12 Fvlgvzswlp Lowlqufgjtl creates A swimming dog on the beach in his signature style.

P13 A protective dog behind the bushes brought to life by Rafael Casanova’s brushstrokes.

P14 A sneaky dog after a bath as seen through Edward Hopper’s eyes.

P15 A wet dog at the gate brought to life by Georges Seurat’s brushstrokes.

E Additional Results
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Figure 8: Salun given the prompts from Dr

Figure 9: ESD-u given the prompts from Dr
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Figure 10: RGD (Ours) given the prompts from Dr
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce the new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve human subjects in our study.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not conduct experiments on individuals.
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