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Abstract. Variational autoencoders (VAEs) and generative adversarial
networks (GANs) enjoy an intuitive connection to manifold learning: in
training the decoder/generator is optimized to approximate a homeo-
morphism between the data distribution and the sampling space. This
is a construction that strives to define the data manifold. A major ob-
stacle to VAEs and GANs, however, is choosing a suitable prior that
matches the data topology. Well-known consequences of poorly picked
priors are posterior and mode collapse. To our knowledge, no existing
method sidesteps this user choice. Conversely, diffusion maps automati-
cally infer the data topology and enjoy a rigorous connection to manifold
learning, but do not scale easily or provide the inverse homeomorphism
(i.e. decoder/generator). We propose a method 4 that combines these ap-
proaches into a generative model that inherits the asymptotic guarantees
of diffusion maps while preserving the scalability of deep models. We
prove approximation theoretic results for the dimension dependence of
our proposed method. Finally, we demonstrate the effectiveness of our
method with various real and synthetic datasets.

Keywords: deep learning, variational inference, manifold learning, image
and video synthesis, generative models, unsupervised learning

1 Introduction

Generative models such as variational autoencoders (VAEs, [19]) and generative
adversarial networks (GANs, [10]) have made it possible to sample remarkably
realistic points from complex high dimensional distributions at low computational
cost. While the theoretical framework behind the two methods are different —
one is derived from variational inference and the other from game theory — they
both involve learning smooth mappings from a user-defined prior p(z) to the
data p(x).

? Equal contribution.
4 https://github.com/lihenryhfl/SpectralVAEGAN

https://github.com/lihenryhfl/SpectralVAEGAN
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When p(z) is supported on a Euclidean space (e.g. p(z) is Gaussian or uniform)
and the p(x) is supported on a manifold (i.e. the Manifold Hypothesis, see [30,8]),
VAEs and GANs become manifold learning methods, as manifolds themselves
are defined as sets that are locally homeomorphic to Euclidean space. Thus the
learning of such homeomorphisms may shed light on the success of VAEs and
GANs in modeling complex distributions.

This connection to manifold learning also offers a reason why these generative
models fail — when they do fail. Known as posterior collapse in VAEs [1,48,14,33]
and mode collapse in GANs [11], both describe cases where the learned mapping
collapses large parts of the input to a single point in the output. This violates the
bijective requirement of a homeomorphism. It also results in degenerate latent
spaces and poor generative performance.

A major cause of such failings is when the geometries of the prior and target
data do not agree. We explore this issue of prior mismatch and previous treatments
of it in Section 3. Given their connection to manifolds, it is natural to draw from
classical approaches in manifold learning to improve deep generative models.
One of the most principled methods is kernel-based manifold learning [38,36,4].
This involves embedding data drawn from a manifold X ⊂ MX into a space
spanned by the leading eigenfunctions of a kernel on MX . We focus specifically
on diffusion maps, where [6] show that normalizations of the kernel define a
diffusion process that has a uniform stationary distribution over the data manifold.
Therefore, drawing from this stationary distribution samples uniformly from the
data manifold. This property was used in [24] to smoothly interpolate between
missing parts of the manifold. However, despite its strong theoretical guarantees,
diffusion maps are poorly equipped for large scale generative modeling as they
do not scale well with dataset size. Moreover, acquiring the inverse mapping
from the embedding space — a crucial component of a generative model — is
traditionally a very expensive procedure [5,21,28].

In this paper we address issues in variational inference and manifold learning by
combining ideas from both. The theory in manifold learning allows us to recognize
and correct prior mismatch, whereas variational inference provides a method to
construct a generative model, which also offers an efficient approximation to the
inverse diffusion map.

Our contributions: 1) We introduce the locally bi-Lipschitz property, a
necessary condition of a homeomorphism, for measuring the stability of a mapping
between latent and data distributions. 2) We introduce variational diffusion
autoencoders (VDAEs), a class of variational autoencoders that, instead of
directly reconstructing the input, have an encoder-decoder that approximates one
discretized time-step of the diffusion process on the data manifold (with respect
to a user defined kernel k). 3) We prove approximation theoretic bounds for deep
neural networks learning such diffusion processes, and show that these networks
define random walks with certain desirable properties, including well-defined
transition and stationary distributions. 4) Finally, we demonstrate the utility of
the VDAE framework on a set of real and synthetic datasets, and show that they
have superior performance and satisfy the locally bi-Lipschitz property.
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Fig. 1: A diagram depicting one step of the diffusion process modeled by the
variational diffusion autoencoder (VDAE). The diffusion and inverse diffusion
maps ψ,ψ−1, as well as the covariance C of the random walk on MZ , are all
approximated by neural networks. Images on the leftmost panel are actually
generated by our method.

2 Background

Variational inference (VI, [18,46]) combines Bayesian statistics and latent
variable models to approximate some probability density p(x). VI exploits a latent
variable structure in the assumed data generation process, that the observations
x ∼ p(x) are conditionally distributed given unobserved latent variables z. By
modeling the conditional distribution, then marginalizing over z, as in

pθ(x) =

∫
z

pθ(x|z)p(z)dz, (1)

we obtain the model evidence, or likelihood that x could have been drawn
from pθ(x). Maximizing the model evidence (Eq. 1) leads to an algorithm for
finding likely approximations of p(x). The cost of computing this integral scales
exponentially with the dimension of z and thus becomes intractable with high
latent dimensions. Therefore we replace the model evidence (Eq. 1) with the
evidence lower bound (ELBO):

log pθ(x) ≥ −DKL(q(z|x)||p(z)) + Ez∼q(z|x)[log pθ(x|z)], (2)

where q(z|x) is usually an approximation of pθ(z|x). Maximizing the ELBO is
sped up by taking stochastic gradients [16], and further accelerated by learning a
global function approximator qφ in an autoencoding structure [19].

Diffusion maps [6] refer to a class of kernel methods that perform non-
linear dimensionality reduction on a set of observations X ⊆MX , where MX

is the assumed data manifold equipped with measure µ. Let x, y ∈ X; given
a symmetric and non-negative kernel k, diffusion maps involve analyzing the
induced random walk on the graph of X, where the transition probabilities
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P (y|x) are captured by the probability kernel p(x, y) = k(x, y)/d(x), where
d(x) =

∫
X
k(x, y)dµ(y) is the weighted degree of x. The diffusion map itself

is defined as ψD(x) := [λ1f1(x), λ2f2(x), ..., λDfD(x)], where {fi}1≤i≤D and
{λi}1≤i≤D are the first D eigenfunctions and eigenvalues of p. An important
construction in diffusion maps is the diffusion distance:

D(x, y)2 =

∫
(p(x, u)− p(y, u))2 dµ(u)

π(u)
, (3)

where π(u) = d(u)/
∑
z∈X d(z) is the stationary distribution of u. Intuitively,

D(x, y) measures the difference between the diffusion processes emanating from
x and y. A key property of ψD is that it embeds the data X ∈ Rm into the
Euclidean space RD so that the diffusion distance is approximated by Euclidean
distance (up to relative accuracy λD

λ1
). Therefore, the arbitrarily complex random

walk induced by k on MX becomes an isotropic Gaussian random walk on
ψ(MX).

SpectralNet [40] is a neural network approximation of the diffusion map ψD
that enjoys a major computational speedup. The eigenfunctions f1, f2, . . . , fD that
compose ψD are learned by optimizing a custom loss function that stochastically
maximizes the Rayleigh quotient for each fi while enforcing the orthogonality of
all fi ∈ {fn}Dn=1 via a custom orthogonalization layer. As a result, the training
and computation of ψ is linear in dataset and model size (as opposed to O(n3)).
We will use this algorithm to obtain our diffusion embedding prior.

Locally bi-Lipschitz coordinates by kernel eigenfunctions. The con-
struction of local coordinates of Riemannian manifolds MX by eigenfunctions
of the diffusion kernel is analyzed in [17]. They establish, for all x ∈ MX , the
existence of some neighborhood U(x) and d spectral coordinates given U(x)
that define a bi-Lipschitz mapping from U(x) to Rd. With a smooth compact
Riemannian manifold, we can let U(x) = B(x, δrin), where δ is some constant
and the inradius rin is the radius of the largest ball around x still contained
in MX . Note that δ is uniform for all x, whereas the indices of the d spectral
coordinates as well as the local bi-Lipschitz constants may depend on x and are
order O(r−1

in ). For completeness we give a simplified statement of the [17] result
in the Appendix.

Using the compactness of the manifold, one can always cover the manifold
with m many neighborhoods (geodesic balls) on which the bi-Lipschitz property
in [17] holds. As a result, there are a total of D spectral coordinates, D ≤ md (in
practice D is much smaller than md, since the selected spectral coordinates in
the proof of [17] tend to be low-frequency ones, and thus the selection on different
neighborhoods tend to overlap), such that on each of the m neighborhoods, there
exists a subset of d spectral coordinates out of the D ones which are bi-Lipschitz
on the neighborhood. We observe empirically that the bi-Lipschitz constants can
be bounded uniformly from below and above (see Section 6.4).
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(a) t = 1 (b) t = 2 (c) t = 4 (d) t = 8

Fig. 2: An example of the diffusion random walk simulated by our method on a
3D loop dataset. t is the number of steps taken in the random walk.

3 Motivation and related work

In this section we justify the key idea of our method: diagnosing and correcting
prior mismatch, a failure case of VAE and GAN training when p(z) and p(x) are
not topologically isomorphic. Intuitively, we would like the latent distribution
to have three nice properties: (1) realizability , that every point in the data
distribution can be realized as a point in the latent distribution; (2) validity ,
that every point in the latent distribution maps to a unique valid point in the
data distribution (even if it is not in the training set); and (3) smoothness , that
points in the latent distribution vary in the intrinsic coordinate system in some
smooth and coherent way.

These properties are precisely those enjoyed by a latent distribution that is
homeomorphic to the data distribution. Validity implies injectivity, realizability
implies surjectivity, smoothness implies continuity; and a mapping between topo-
logical spaces that is injective, surjective, and continuous is a homeomorphism.
Therefore, studying algorithms that encourage approximations of homeomor-
phisms is of fundamental interest.

Though the Gaussian distribution for p(z) is mathematically elegant and
computationally expedient, there are many datasets for which it is ill-suited.
Spherical distributions are known to be superior for modeling directional data
[9,26], which can be found in fields as diverse as bioinformatics [13], geology
[32], materials science [20], natural image processing [3], and many preprocessed
datasets5. For data supported on more complex manifolds, the literature is sparse,
even though it is well-known that data often lie on such manifolds [30,8]. In
general, any manifold-supported distribution that is not globally homeomorphic
to Euclidean space will not satisfy conditions (1-3) above.

Previous research on alleviating prior mismatch exists in various forms,
and has focused on increasing the family of tractable latent distributions for
generative models. [7,47] consider VAEs with the von-Mises Fisher distribution,
a geometrically hyperspherical prior, and [43] consider mixtures of priors. [35]
propose a method that, like our method, also samples from the prior via a diffusion

5 Any dataset where the data points have been normalized to be unit length becomes
a subset of a hypersphere.



6 H. Li, et al.

process over a manifold. However, their method requires very explicit knowledge
of the manifold (including its projection map, scalar curvature constant, and
volume), and give up an exact estimation of the KL divergence. [34] avoids
mode collapse by lower bounding the KL-divergence term away from zero to
avoid overfitting. Similarly, [25] focuses on avoiding mode collapse by using
class-conditional generative models, however it requires label supervision and
does not provide any guarantees that the latent space generated is homeomorphic
to the data space. Finally, [15] propose the re-scaling of various terms in the
ELBO to augment the latent space — often to surprisingly great effect on latent
feature discovery — but are restricted to the case where the latent features are
independent.

While these methods expand the repertoire of feasible priors, they all require
explicit user knowledge of the data topology. On the other hand, our method
allows the user to be agnostic to this choice of topology; they only need to specify
an affinity kernel k for local pairwise similarities. We achieve this by employing
ideas from both diffusion maps and variational inference, resulting in a fully
data-driven approach to latent distribution selection in deep generative models.

4 Method

In this section we propose the variational diffusion autoencoder (VDAE), a class
of generative models built from ideas in variational inference and diffusion maps.
Given the data manifold MX , observations X ⊂MX , and a kernel k, VDAEs
model the geometry of X by approximating a random walk over the latent
diffusion manifoldMZ := ψ(MX). The model is trained by maximizing the local
evidence: the evidence (i.e. log-likelihood) of each point given its random walk
neighborhood. Points are generated from the trained model by sampling from π,
the stationary distribution of the resulting random walk.

Starting from some point x ∈ X, we can think of one step of the walk
as the composition of three functions: 1) the approximate diffusion map ψ̃ω :
MX →MZ parameterized by ω, 2) the stochastic function that samples from

the diffusion random walk z′ ∼ qφ(z′|x) = N (ψ̃ω(x), C̃φ(x)) on MZ , and 3)

the approximate inverse diffusion map ψ̃−1
θ : MZ →MX that generates x′ ∼

p(x′|z′) = N (ψ̃−1
θ (z′), cI) where c is a fixed, user-defined hyperparameter usually

set to 1.
Note that Euclidean distances in MZ approximate single-step random walk

distances on MX due to properties of the diffusion map embedding (see Section
2 and [6]). These properties are inherited by our method via the SpectralNet

algorithm, since ψ̃ω|MX
:MX →MZ satisfies the locally bi-Lipschitz property.

This bi-Lipschitz property also reduces the need for regularization, and leads to
guarantees of the ability of the VDAE to avoid posterior and mode collapse (see
Section 5).

In short, to model a diffusion random walk over MZ , we must learn the
functions ψ̃ω, ψ̃

−1
θ , and C̃φ that approximate the diffusion map, the inverse

diffusion map, and the covariance of the random walk on MZ , at all points
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z ∈ MZ . SpectralNet gives us ψ̃ω. To learn ψ̃−1
θ and C̃φ, we use variational

inference.

4.1 The lower bound

Formally, let us define Ux := Bd(x, δ) ∩MX , where Bd(x, δ) is the δ-ball around
x with respect to d(·, ·), the diffusion distance on MZ . For each x ∈ X we define
the local evidence of x as

Ex′∼p(x′|x)|Ux log pθ(x
′|x), (4)

where p(x′|x)|Ux restricts p(x′|x) to Ux. This gives the local evidence lower bound

log pθ(x
′|x) ≥ −DKL(qφ(z′|x)||pθ(z′|x))︸ ︷︷ ︸

divergence from true diffusion probabilities

+ Ez′∼qφ(z′|x) log pθ(x
′|z′)︸ ︷︷ ︸

neighborhood reconstruction error

,

(5)

which produces the empirical loss function L̃VDAE = −DKL(qφ(z′|x)||pθ(z′|x)) +
log pθ(x

′|z′i), where z′i = gφ,Θ(x, εi), εi ∼ N (0, I). The function gφ,Θ is deter-

ministic and differentiable, depending on ψ̃ω and C̃φ, that generates qφ by the
reparameterization trick6.

4.2 The sampling procedure

Composing qφ(z′|x)(≈ pθ(z
′|x)) with pθ(x

′|z′) gives us an approximation of
pθ(x

′|x). Then the simple, parallelizable, and fast random walk based sampling
procedure naturally arises: initialize with an arbitrary point on the manifold
x0 ∈MX (e.g. from the dataset X), pick suitably large N , and for n = 1, . . . , N
draw xn ∼ p(x|xn−1). See Section 6.2 for examples of points drawn from this
procedure.

4.3 A practical implementation

We now introduce a practical implementation, considering the case where ψ̃ω(x),
qφ(z′|x) and pθ(x

′|z′) are neural network functions.
The neighborhood reconstruction error Ez′∼qφ(z′|x) log pθ(x

′|z′) should
be differentiated from the self reconstruction error in VAEs, i.e. reconstructing
x′ vs x. Since qφ(z′|x) models the neighborhood of ψ̃ω(x), we may sample qφ
to obtain z′ (the neighbor of x in the latent space). Assuming ψ−1 exists, we

have x′ ∼ pθ(x′|x)(≈ ψ̃−1
θ (qφ(z′|x))). To make this practical, we can approximate

x′ by finding the closest data point to x′ in random walk distance (due to the

6 Though q depends on φ and ω, we will use qφ := qφ,ω to be consistent with existing
VAE notation and to indicate that ω is not learned by variational inference.
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aforementioned advantages of the latent space). In other words, we approximate
empirically by

x′ ≈ arg min
y∈A

|ψ̃ω(y)− z′|2d , z′ ∼ qφ(z′|x), (6)

where A ⊆ X is the training batch.

On the other hand, the divergence of random walk distributions,
−DKL(qφ(z′|x)||pθ(z′|x)), can be modeled simply as the divergence of two Gaus-
sian kernels defined on MZ . Though pθ(z

′|x) is intractable, the diffusion map
ψ gives us the diffusion embedding Z, which is an approximation of the true
distribution of pθ(z

′|x) in a neighborhood around z = ψ(x). We estimate the
first and second moments of this distribution in RD by computing the local
Mahalanobis distance of points in the neighborhood. Then, by minimizing the KL
divergence between qφ(z′|x) and the one implied by this Mahalanobis distance,
we obtain the loss:

−DKL(qφ(z′|x)||pθ(z′|x)) = − log
|αΣ∗|
|C̃φ|

+ d− tr{(αΣ∗)−1C̃φ}, (7)

where C̃φ(x) is a neural network function, Σ∗(x) = Cov(Bd(ψ(x), δ) ∩ Z) is the
covariance of the points in a neighborhood of z = ψ(x) ∈ Z, and α is a scaling

parameter controlling the random walk step size. Note that the covariance C̃φ(x)
does not have to be diagonal, and in fact is most likely not. Combining Eqs. 6
and 7 we obtain Algorithm 1.

Since we use neural networks to approximate the random walk induced by
the composition of qφ(z′|x) and pθ(x

′|z′), the generation procedure is highly
parallelizable. This leads naturally to a sampling procedure for this random walk
(Algorithm 2). We observe that the random walk enjoys rapid mixing properties
— it only takes several iterations of the random walk to sample from all ofMZ

7.

Finally, we describe a practical method for computing the local bi-Lipschitz
property. (In Section 6.4 we then perform comparisons with this method.) Let
Z and X be the latent and generated data distributions of our model f (i.e.
f : Z → X). We define, for each z ∈ Z and k ∈ N, the function bilipk(z):

bilipk(z) = min{K :
1

K
≤ dx(f(z), f(z′))

dZ(z, z′)
≤ K},

for all z′ ∈ Uz,k ∩ Z, where dX and dZ are metrics on X and Z, and Uz,k is
the k-nearest neighborhood of z. Intuitively, increasing values of K characterize
an increasing tendency to stretch or compress regions of space. By analyzing
statistics of the local bi-Lipschitz measure at all points in a latent space Z, we
gain insight into how well-behaved a mapping f is.

7 For all experiments in Section 6, the number of steps required to draw from π is less
than 10.
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ω, φ, θ ← Initialize parameters
Obtain parameters ω for the approximate diffusion map ψ̃ω via SpectralNet [40]
while not converged do
A← Random batch from X
for x ∈ A do
z ← pφ(z′|ψ̃ω(x)) {Random walk step}
x′ ← arg miny∈A\{x} |ψ̃ω(y)− z′|2d {Find batch neighbors}
g ← g + 1

|A|∇φ,θ log pθ(x
′|x) {Compute Eq. (5)}

end for
Update φ, θ using g

end while
Algorithm 1: VDAE training

X0 ← Initialize with points X0 ⊂ X; t← 0
while p(X0) 6≈ π do

for xt ∈ X do
zt+1 ∼ pφ(z′|ψ̃ω(xt)) {Random walk step}
xt+1 ∼ pθ(x|zt+1) {Map back to input space}

end for
t← t+ 1

end while
Algorithm 2: VDAE sampling

4.4 Comparison to variational inference (VI)

Traditional VI involves maximizing the joint log-evidence of each data point xi
in a given dataset via the ELBO (see 2). Our method differs in both the training
and evaluation steps.

In training, our setup is the same as above, except our likelihood is a condi-
tional likelihood p(x′|x)|Ux , where x′ is in the diffusion neighborhood of x. Thus
we maximize the local log-evidence of each data point Ex′∼p(x′|xi) log pθ(x

′|xi),
which can be lower bounded by Eq. (5). Thus our prior is p(z′|x) and our posterior
is p(z′|x′, x) = p(x′, z′|x)/p(x′|x), and we train an approximate posterior qφ(z′|x)
and a recognition model pθ(x

′|z′).
In evaluation, we draw from the stationary distribution p(z′) of the diffusion

random walk on the latent manifold Mz = ψ(Mx). We then leverage the latent
variable structure of our model to draw a sample x = pθ(x

′|z′)p(z′), where
pθ(x

′|xi) is the recognition model.

5 Theory

In this section, we show that the desired diffusion and inverse diffusion maps
ψ :MX →MZ and ψ−1 :MZ →MX can be approximated by neural networks,
where the network complexity is bounded by quantities related to the intrinsic
geometry of the manifold.
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The capacity of the encoder ψ̃ has already been considered in [39] and [29].

Thus we focus on the capacity of the decoder ψ̃−1. The following theorem is
proved in Appendix A.3, based on the result in [17].

Theorem 1 LetMX ⊂ Rm be a smooth d-dimensional manifold, ψ(MX) ⊂ RD
be the diffusion map for D ≥ d large enough to have a subset of coordinates
that are locally bi-Lipschitz. Let X =

[
X1, ..., Xm

]
be the set of all m extrinsic

coordinates of the manifold. Then there exists a sparsely-connected ReLU network
fN , with 4DCMX

nodes in the first layer, 8dmN nodes in the second layer, and
2mN nodes in the third layer, and m nodes in the output layer, such that

‖X(ψ(x))− fN (ψ(x))‖L2(ψ(MX)) ≤
√
mCψ/

√
N, (8)

where the norm is interpreted as ‖F‖2L2(ψ(M)) :=
∫
‖F (ψ(x))‖22dψ(x). Here Cψ

depends on how sparsely X(ψ(x))
∣∣
Ui

can be represented in terms of the ReLU
wavelet frame on each neighborhood Ui, and CMX

on the curvature and dimension
of the manifold MX .

Thm 1 guarantees the existence and size of a decoder network for learning
a manifold. Together with the main theorem in [39], we obtain guarantees for
both the encoder and decoder on manifold-valued data. The proof is built on
two properties of ReLU neural networks: 1) their ability to split curved domains
into small, almost Euclidean patches, 2) their ability to build differences of bump
functions on each patch, which allows one to borrow approximation results from
the theory of wavelets on spaces of homogeneous type. The proof also crucially
uses the bi-Lipschitz property of the diffusion embedding [17]. The key insight
of Thm 1 is that, because of the bi-Lipschitz property, the coordinates of the
manifold in the ambient space Rm can be thought of as functions of the diffusion
coordinates. We show that because each coordinate function Xi is Lipschitz, the
ReLU wavelet coefficients of Xi are necessarily `1. This allows us to use the
existing guarantees of [39] to complete the desired bound.

We also discuss the connections between the distribution at each point in
diffusion map space, qφ(z|x), and the result of this distribution after being
decoded through the decoder network fN (z) for z ∼ qφ(z|X). Similar to [41], we
characterize the covariance matrix Cov(fN (z)) := Ez∈qφ(z|x)[fN (z)fN (z)T ]. The
following theorem is proved in Appendix A.3.

Theorem 2 Let fN be a neural network approximation to X as in Thm 1, such
that it approximates the extrinsic manifold coordinates. Let C ∈ Rm×m be the
covariance matrix C = Ez∈qφ(z|x)[fN (z)fN (z)T ]. Let qφ(z|x) ∼ N(ψ(x), Σ) with
small enough Σ that there exists a patch Uz0 ⊂M around z0 satisfying the bi-
Lipschitz property of [17], and such that Pr(z ∼ qφ(z|x) 6∈ ψ(Uz0)) < ε. Then the
number of eigenvalues of C greater than ε is at most d, and C = Jz0ΣJ

T
z0 +O(ε)

where Jz0 is the m×D Jacobian matrix at z0.

Thm 2 establishes the relationship between the covariance matrices used in
the sampling procedure and their image under the decoder fN to approximate
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Fig. 3: We consider the rotating bulldog example. Images are drawn from the
latent distribution and plotted in terms of the 2D latent space of each model.
From left to right: VDAE, SVAE, β-VAE, WGAN.

ψ−1. Similar to [41], we are able to sample according to a multivariate normal
distribution in the latent space. Thus, the resulting cloud in the data space is
distorted (to first order) by the local Jacobian of the map fN . The key insight of
Thm 2 is from combining this idea with the observation of [17]: that ψ−1 depends
locally only on d of the coordinates in the D dimensional latent space.

6 Experimental results

In this section we explore various properties of the VDAE and compare it
against several deep generative methods on a selection of real and synthetic
datasets. Unless otherwise noted, all comparisons are against the Wasserstein
GAN (WGAN), β-VAE, and hyperspherical VAE (SVAE). Each model is trained
with the same architecture across all experiments (see Section A.6).

6.1 Video generation with rigid-body motion

We first consider the task of generating new frames from videos of rigid-body
motion, and examine the latent spaces of videos with known topological structure
to demonstrate the homeomorphic properties of the VDAE. We consider two
examples, the rotating bulldog example [23] and the COIL-20 dataset. [31].

The rotating bulldog example consists of 200 frames of a color video (each
frame is 100 × 80 × 3) of a spinning figurine. The rotation of the bulldog and
the fixed background create a data manifold that is topologically circular, cor-
responding to the single degree of variation (the rotation angle parameter) in
the dataset. For all methods we consider a 2 dimensional latent space. In Fig.
3 we present 300 generated samples by displaying them on a scatter plot with
coordinates corresponding to their latent dimensions z1 and z2. In the Appendix
table A.1, we evaluate the quality of the generated images using the Frechet
inception distance (FID).

The COIL-20 data set consists of 360 images of five different rotating objects
displayed against on a black background (each frame is 448×416×1). This yields
several low dimensional manifolds, one for each object, and results in a difficult
data set for traditional generative models given its small size and the complex
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Fig. 4: From left to right, the first three scatterplots show examples of distributions
reconstructed from a random walk on MZ (via Algorithm 2) given a single seed
point drawn from X. The next three are examples of a single burst drawn from
pθ(x|z). The distributions are a loop (a, d), sphere (b, e), and the Stanford bunny
(c, f).

geometric structure. For all comparisons, we use 10 dimensional latent space. The
resulting images are embedded with tSNE and plotted in Fig. A.3. Note that,
while other methods generate images that topologically mimic the fixed latent
distribution of the model (e.g. N (0, Id), Uniform(0, 1)d), our method generates
images that remain true to the actual topological structure of the dataset.

6.2 Data generation from uniformly sampled manifolds

In the next experiment, we visualize the results of the sampling procedure in
Algorithm 2 on three synthetic manifolds. As discussed in 4.2, we randomly select
an initial seed point, then recursively sample from pθ(x

′|x) to simulate a random
walk on the manifold.

In fig. 4 (a-c) for three different manifolds, the location of the initial seed
point is highlighted, then 20 steps of the random walk are taken, and the resulting
generated points are displayed. The generated points remain on the manifold
even after this large number of resampling iterations, and the distribution of
sampled points converges to a uniform stationary distribution on the manifold.
Moreover, we observe that this stationary distribution is reached quickly, within
5-10 iterations. In (d-f) of the same Fig. 4, we show pθ(x

′|x) by drawing a large
number of points from a single-step random walk starting from the same seed
point. As can be seen, a single step of pθ(x

′|x) covers a large part of the latent
space.

6.3 Cluster conditional data generation

In this section, we deal with the problem of generating samples from data with
multiple clusters in an unsupervised fashion (i.e. no a priori knowledge of the
cluster structure). Clustered data creates a problem for many generative models,
as the topology of the latent space (i.e. normal distribution) differs from the
topology of the data space with multiple clusters.

First we show that our method is capable of generating new points from a
particular cluster given an input point from that cluster. This generation is done
in an unsupervised fashion, which is a different setting from the approach of
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Fig. 5: An example of cluster conditional sampling with our method, given a seed
point (top left of each image grid). The VDAE is able to produce examples via
the random walk that stay approximately within the cluster of the seed point,
without any supervised knowledge of the cluster.

conditional VAEs [42] that require training labels. We demonstrate this property
on MNIST [22] in Figure 5, and show that the newly generated points after a
short diffusion time remain in the same class as the seeded image.

The problem of addressing differing topologies between the data and the latent
space of a generative model has been acknowledged in recent works on rejection
sampling [2,45]. Rejection sampling of neural networks consists of generating
a large collection of samples using a standard GAN, and then designing a
probabilistic algorithm to decide in a post-hoc fashion whether the points were
truly in the support of the data distribution p(x).

In the following experiment, we compare to a standard example in the
literature for rejection sampling in generative models (see [2]). The data consists
of nine bounded spherical densities with significant minimal separation, lying on a
5× 5 grid. A GAN struggles to avoid generating points in the gaps between these
densities, and thus requires the post-sampling rejection analysis described in [2].
Conversely, our model creates a latent space that separates each of these clusters
into their own coordinates and generates only points that in the neighborhood of
the support of p(x). Figure 6 shows that this results in significantly fewer points
generated in the gaps between clusters. Our VDAE architecture is described in
A.6, GAN and DRS-GAN architectures are as described in [2].

6.4 Quantitative comparisons of generative models

For this comparison, we consider seven datasets: three synthetic (circle, torus,
Stanford bunny [44]) four involving natural images (rotating bulldog, Frey faces,
MNIST, COIL-20). The β parameter in the β-VAE is optimized via a cross
validation procedure. see Appendix for a complete description of the datasets. We
report the mean and standard deviation of the Gromov-Wasserstein distance [27]
and median bi-Lipschitz over 5 runs in Table 1. We further evaluate the results
using kernel Maximum Mean Discrepancy [12], see Table A.2 in the Appendix.

By constraining our latent space to be the diffusion embedding of the data, our
method finds a mapping that automatically enjoys the homeomorphic properties
of an ideal mapping, and this is reflected in the low values of the local bi-Lipschitz
constant. Conversely, other methods do not consider the topology of the data
in the prior distribution. This is especially apparent in the β-VAE and SVAE,
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Fig. 6: Comparison of samples from our method against several others on a 5× 5
Gaussian grid. Left-right are original data, GAN, DRS-GAN, and VDAE (our
method). GAN and DRS-GAN samples taken from [2].

which must generate from the entirety of the input distribution X because they
minimize a reconstruction loss. Interestingly, the mode collapse tendency of GANs
alleviate the pathology of the bi-Lipschitz constant by allowing the GAN to focus
on a subset of the distribution — but this comes at the cost of collapse to a few
modes of the dataset. Our method is able to reconstruct the entirety of X while
simultaneously maintaining a low local bi-Lipschitz constant.

7 Discussion

In this work, we have shown that VDAEs provide an intuitive, effective, and
mathematically rigorous solution to prior mismatch, which is a common cause
for posterior collapse in latent variable models. Unlike prior works, we do not
require user specification of the prior — our method infers the prior geometry
directly from the data, and we observe that it achieves state-of-the-art results on
several real and synthetic datasets. Finally, our work points to several directions
for future research: (1) can we leverage recent architectural advances to VAEs to
further improve VDAE performance, and (2) can we leverage manifold learning
techniques to improve latent representations in other methods?
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G-W WGAN β-VAE SVAE VDAE

Circle 14.9(6.8) 46.1(9.7) 7.9(2.2) 2.6(1.3)
Torus 6.4 (1.9) 11.7(1.6) 23.4(2.8) 4.9 (0.5)
Bunny 11.4(3.9) 32.8(5.9) 14.3(5.5) 2.9(1.1)
Bulldog 117.3(8.4) 61.3(9.7) 53.9(7.6) 15.3(1.7)
Frey 18.1(2.9) 19.8(4.6) 13.4(3.6) 9.7(3.3)
MNIST 3.6(0.9) 10.2(3.3) 15.2(4.9) 14.4(3.5)
COIL-20 16.5(2.4) 23.8(5.9) 32.1(4.9) 11.8(2.1)

biLip WGAN β-VAE SVAE VDAE

Circle 4.6 3.7 3.6 3.1
Torus 3.3 7.9 9.5 4.8
Bunny 5.6 34.4 35.6 5.5
Bulldog 17.4 7.6 12.9 6.8
Frey 37 33.3 39.4 29.7
MNIST 1.9 1.6 6.7 8.4
COIL-20 4.7 3.8 8.4 3.1

Table 1: Left: means and standard deviations of the Gromov-Wasserstein (G-
W) distance between original and generated samples. Right: medians of the
bi-Lipschitz measure.
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A Appendix

A.1 Derivation of Local Evidence Lower Bound (Eq. 5)

We begin with taking the log of the random walk transition likelihood,

log pθ(x
′|x) = log

∫ ′
z

pθ(x
′, z′|x)dz′ (A.1)

= log

∫
z

pθ(x
′|z′, x)p(z′|x)

q(z′)

q(z′)
dz′ (A.2)

= logEz′∼q(z′)
[
pθ(x

′|z′, x)
p(z′|x)

q(z′)

]
(A.3)

≥ Ez′∼q(z′) [log pθ(x
′|z′, x)] + Ez′∼q(z′)

[
log

p(z′|x)

q(z′)

]
(A.4)

≥ Ez′∼q(z′) [log pθ(x
′|z′, x)] +DKL[q(z′)||p(z′|x)] (A.5)

where q(z′) is an arbitrary distribution. We let q(z′) to be the conditional
distribution q(z′|x). Furthermore, if we make the simplifying assumption that
pθ(x

′|z′, z) = pθ(x
′|z′), then we obtain Eq. 5

log pθ(x
′|x) ≥ −DKL(qφ(z′|x)||pθ(z′|x)) + Ez′∼qφ(z′|x) log pθ(x

′|z′). (A.6)

A.2 Results in [17]

To state the result in [17], we need the following set-up:
(C1)M is a d-dimensional smooth compact manifold, possibly having bound-

ary, equipped with a smooth (at least C2) Riemannian metric g;
We denote the geodesic distance by dM, and the geodesic ball centering at x

with radius r by BM(x, r). Under (C1), for each point x ∈M, there exists rM(x)
which is the inradius, that is, r is the largest number s.t. BM(x, r) is contained
M.

Let 4M be the Laplacian-Beltrami operator on M with Neumann boundary
condition, which is self-adjoint on L2(M,µ), µ being the Riemannian volume
given by g. Suppose that M is re-scaled to have volume 1. The next condition
we need concerns the spectrum of the manifold Laplacian

(C2) 4M has discrete spectrum, and the eigenvalues λ0 ≤ λ1 ≤ · · · satisfy
the Weyl’s estimate, i.e. exists constant C which only depends on M s.t.

|{j : λj ≤ T}| ≤ CT d/2.

Let ψj be the eigenfunction associated with λj , {ψj}j form an orthonormal
bases of L2(M,µ). The last condition is

(C3) The heat kernel (defined by the heat equation on M) has the spectral
representation as

Kt(x, y) =

∞∑
j=0

e−tλjψj(x)ψj(y).
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Theorem 3 (Thm 2 [17], simplified version) Under the above setting and
assume (C1)-(C2), then there are positive constants c1, c2, c3 which only depend on
M and g, s.t. for any x ∈M, rM(x) being the inradius, there are d eigenfunctions
of 4M, ψj1 , · · · , ψjd , which collectively give a mapping Ψ :M→ Rd by

Ψx(x) = (ψj1(x), · · · , ψjd(x))

satisfying that ∀y, y′ ∈ B(x, c1rM(x)),

c2rM(z)−1dM(y, y′) ≤ ‖Ψx(y)− Ψx(y′)‖ ≤ c3rM(z)−1−d/2dM(y, y′).

That is, Ψ is bi-Lipschitz on the neighborhood B(x, c1rM(x)) with the Lipschitz
constants indicated as above. The subscript x in Ψx emphasizes that the indices
j1, · · · , jd may depend on x.

A.3 Proofs

Proof (of Thm 1). The proof of Thm 1 is actually a simple extension of the
following Thm, Thm 4, which needs to be proved for each individual extrinsic
coordinate Xk, hence the additional factor of m coming from the L2 norm of m
functions.

Theorem 4 Let M⊂ Rm be a smooth d-dimensional manifold, ψ(M) ⊂ RD be
the diffusion map for D ≥ d large enough to have a subset of coordinates that
are locally bi-Lipschitz. Let one of the m extrinsic coordinates of the manifold
be denoted X(ψ(x)) for x ∈ M. Then there exists a sparsely-connected ReLU
network fN , with 4DCM nodes in the first layer, 8dN nodes in the second layer,
and 2N nodes in the third layer, such that

‖X − fN‖L2(ψ(M)) ≤
Cψ√
N

(A.7)

where Cψ depends on how sparsely X(ψ(x))
∣∣
Ui

can be represented in terms of
the ReLU wavelet frame on each neighborhood Ui, and CM on the curvature and
dimension of the manifold M.

Proof (of Thm 4).
The proof borrows from the main theorem of [39]. We adopt this notation and

summarize the changes in the proof here. For a full description of the theory and
guarantees for neural networks on manifolds, see [39]. Let CM be the number
of neighborhoods Ui = B(xi, δ) ∩M needed to cover M such that ∀x, y ∈ Ui,
(1− ε)‖x− y‖ ≤ dM(x, y) ≤ (1 + ε)‖x− y‖. Here, we choose δ = min(δM, κ

−1ρ)
where δM is the largest δ that preserves locally Euclidean neighborhoods and
κ−1ρ is the smallest value from [17] such that every neighborhood Ui has a
bi-Lipschitz set of diffusion coordinates.

Because of the locally bi-Lipschitz guarantee from [17], we know for each Ui
there exists an equivalent neighborhood ψ̃(Ui) in the diffusion map space, where
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ψ̃(x) =
[
ψi1(x), ..., ψid(x)

]
. Note that the choice of these d coordinates depends

on the neighborhood Ui. Moreover, we know the Euclidean distance on ψ(Ui) is
locally bi-Lipschitz w.r.t. dM(·, ·) on Ui.

First, we note that as in [39], the first layer of a neural network is capable of

using 4D units to select the subset of d coordinates ψ̃(x) from ψ(x) for x ∈ Ui
and zeroing out the other D − d coordinates with ReLU bump functions. Then
we can define X(ψ̃(x)) = X(ψ(x)) on x ∈ Ui.

Now to apply the theorem from [39], we must establish that X
∣∣
Ui

: ψ̃(Ui)→ R
can be written efficiently in terms of ReLU functions. Because of the manifold and
diffusion metrics being bi-Lipschitz, we know at a minimum that ψ̃ is invertible
on ψ̃(Ui). Because of this invertibility, we will slightly abuse notation and refer to
X(ψ(x)) = X(x), where this is understood to be the extrinsic coordinate of the
manifold at the point x that cooresponds to ψ(x). we also know that ∀x, y ∈ Ui,

|X(ψ̃(x))−X(ψ̃(y))| = |X(x)−X(y)|
≤ max

z∈Ui
‖∇X(z)‖d(x, y)

≤ maxz∈Ui ‖∇X(z)‖
1− ε

‖ψ̃(x)− ψ̃(y)‖,

where ∇X(z) is understood to be the gradient of X(z) at the point z ∈M. This

means X(ψ̃(x)) is a Lipschitz function w.r.t. ψ̃(x). Because X(ψ̃(x)) Lipschitz
continuous, it can be approximated by step functions on a ball of radius 2−` to

an error that is at most
maxz∈Ui ‖∇X(z)‖

1−ε 2−`. This means the maximum ReLU

wavelet coefficient is less than
maxz∈Ui ‖∇X(z)‖

1−ε (2−`+2−`+1). This fact, along with

the fact that ψ̃(Ui) is compact, gives the fact that on ψ̃(Ui), set of ReLU wavelet
coefficients is in `1. And from [39], if on a local patch the function is expressible
in terms of ReLU wavelet coefficients in `1, then there is an approximation rate
of 1√

N
for N ReLU wavelet terms.

Proof (of Thm 2). We borrow from [41] to prove the following result. Given that
the bulk of the distribution q lies inside ψ(Uz0), we can consider only the action
of fN on ψ(Uz0) rather than on the whole space. Because the geodesic on U is
bi-Lipschitz w.r.t. the Euclidean distance on the diffusion coordinates (the metric
on the input space), we can use the results from [41] and say that on ψ(Uz0) the
output covariance matrix is characterized by the Jacobian of the function fN
mapping from Euclidean space (on the diffusion coordinates) to the output space,
at the point z0. So the covariance of the data lying insize ψ(Uz0) is Jz0ΣJ

T
z0 , with

an O(ε) perturbation for the fact that ε fraction of the data lies outside ψ(Uz0).

The effective rank of C being at most d comes from the locally bi-Lipschitz
property. We know X(ψ(x)) only depends on the d coordinates ψ̃(x) as in the
proof of Thm 1, which implies fN (ψ(x)) satisfies a similarly property if fN fully
learned X(ψ(x)). Thus, while J ∈ Rm×D, it is at most rank d, which means
JΣJT is at most rank d as well.
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A.4 Spectral Net

A.5 Additional Experimental Result

To evaluate the quality of the generated images in the Bulldog dataset, we use
the Frechet inception distance (FID). We train the different generative models 5
times and compute the FID between source and generated images. In table A.1
we present the mean and standard deviations of the FID.

FID GAN VAE SVAE VDAE

Bulldog 264.4(18.4) 245.7(14.7) 400.6 (6.2) 144.3(12.6)

Table A.1: Frechet inception distance (FID) on the Bulldog dataset, mean and
standard deviation.

MMD GAN VAE SVAE VDAE

Circle 9.3(11.1) 8.3(4.4) 8.1 (4.2) 7.3(4.3)
Torus 12.3 (4.7) 63.3 (12.9) 84.5(11.7) 41.9 (4.1)
Bunny 175.6(68.6) 725.8(3.8) 601.7(41.1) 3.6(0.3)
Bulldog 741.8(88) 167.3(16.4) 213.7(13.1) 9.68(3.44)
Frey 34.9(5.1) 39.3(6.1) 29.4 47.0
MNIST 3.5(0.6) 27.9(1) 20.6(1.2) 5.79(0.3)
COIL-20 3.3(0.9) 39.2(9.6) 55.7(4.7) 7.4(1.07)

Table A.2: Measures of similarity between training data and generated data using
Maximum Mean Discrepancy. Comparisons are across a variety of synthetic and
real data sets

A.6 Experimental Architectures

For the circle, torus, Stanford bunny, Frey faces 8, and the 5x5 spherical density
datasets, we used a single 500-unit hidden layer network for all models used in the
paper (i.e. decoder, encoder, generator, discriminator, for the VAE, Wasserstein
GAN, hyperspherical VAE, and our method).

As higher dimensional datasets, we used a slightly larger architecture for
the MNIST, COIL-20, and rotating bulldog datasets: two hidden-layer de-
coder/generators of width 1024 and 2048, and two hidden-layer encoder/discriminators
of width 2048 and 1024. All activations are still ReLU.

8 https://cs.nyu.edu/ roweis/data.html
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(a) VAE (b) GAN

(c) SVAE (d) VDAE

Fig. A.1: A tSNE plot of generated images from Frey data set. While the images
from the VAE and GAN are compelling, they do not capture the geometric
structure of the Frey faces dataset. This structure is much more apparent in the
images generated by SVAE and VDAE. In particular, the VDAE has captured a
linear structure in the data, which reflects the fact that the dataset was created
from a video.
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(a) VAE (b) GAN

(c) SVAE (d) VDAE

Fig. A.2: A tSNE plot of generated images from Frey data set. Like with Fig. A.1
(Frey faces), the images generated by VAE, GAN, and SVAE have a unimodal
distribution that does not capture the clustered structure of the MNIST dataset.
VDAE, on the other hand, organizes the digits into clear clusters, and does not
generate from regions where there is low support in the training distribution.
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(a) VDAE (b) SVAE

(c) β-VAE (d) WGAN

Fig. A.3: A tSNE embedding of 360 generated images from COIL-20 data set.


	Variational Diffusion Autoencoders with Random Walk Sampling

